Bài 5 trang 190 SGK Đại số và Giải tích 12 Nâng cao
Cho \(z = - {1 \over 2} + {{\sqrt 3 } \over 2}i.\)
Hãy tính \({1 \over z}\); \(\overline z \); \({z^2}\); \({\left( {\overline z } \right)^3}\); \(1 + z + {z^2}\).
Giải
Ta có \(\left| z \right| = \sqrt {{{\left( { - {1 \over 2}} \right)}^2} + {{\left( {{{\sqrt 3 } \over 2}} \right)}^2}} = 1\)
Nên \({1 \over z} = {{\overline z } \over {{{\left| z \right|}^2}}} = \overline z = - {1 \over 2} - {{\sqrt 3 } \over 2}i\)
\({z^2} = {\left( { - {1 \over 2} + {{\sqrt 3 } \over 2}i} \right)^2} = {1 \over 4} - {{\sqrt 3 } \over 2}i - {3 \over 4} = - {1 \over 2} - {{\sqrt 3 } \over 2}i\)
\({\left( {\overline z } \right)^3} = \overline z .{\left( {\overline z } \right)^2} = \left( { - {1 \over 2} - {{\sqrt 3 } \over 2}i} \right).{\left( {{1 \over 2} + {{\sqrt 3 } \over 2}i} \right)^2}\)
\( = \left( { - {1 \over 2} - {{\sqrt 3 } \over 2}i} \right).\left( { - {1 \over 2} + {{\sqrt 3 } \over 2}i} \right) = {\left( { - {1 \over 2}} \right)^2} - {\left( {{{\sqrt 3 } \over 2}i} \right)^2}\)
\(= {1 \over 4} + {3 \over 4} = 1\)
\(1 + z + {z^2} = 1 + \left( { - {1 \over 2} + {{\sqrt 3 } \over 2}i} \right) + \left( { - {1 \over 2} - {{\sqrt 3 } \over 2}i} \right) = 0\)
Bài 6 trang 190 SGK Giải tích 12 Nâng cao
Chứng minh rằng:
a) Phần thực của số phức z bằng \({1 \over 2}\left( {z + \overline z } \right)\), phần ảo của số phức z bằng \({1 \over {2i}}\left( {z - \overline z } \right);\)
b) Số phức z là số ảo khi và chỉ khi \(z = - \overline z ;\)
c) Với mọi số phức z, z', ta có \(\overline {z + z'} = \overline z + \overline {z'} ,\,\overline {zz'} = \overline z .\,\overline {z'} \), và nếu \(z \ne 0\) thì \({{\overline {z'} } \over {\overline z }} = \overline {\left( {{{z'} \over z}} \right)} \).
Giải
a) Giả sử \(z=a+bi\;(a,b\in\mathbb R)\) thì \(\overline z = a - bi\)
Từ đó suy ra \(a = {1 \over 2}\left( {z + \overline z } \right);\,\,b = {1 \over {2i}}\left( {z - \overline z } \right)\)
b) z là số ảo khi và chỉ khi phần thực của z bằng 0
\(\Leftrightarrow {1 \over 2}\left( {z + \overline z } \right) = 0 \Leftrightarrow z = - \overline z \)
c) Giả sử \(z=a+bi;\; z'=a'+b'i\) \((a,b,a',b'\in\mathbb R)\)
Ta có:
\(\eqalign{
& \overline {z + z'} = \overline {(a + a') + (b + b')i} = a + a' - (b + b')i \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = a - bi + a' - b'i = \overline z + \overline {z'} \cr
& \overline {z.z'} = \overline {\left( {a + bi} \right).\left( {a' + b'i} \right)} \cr&\,\,\,\,\,\,\,\,\,\, = \overline {\left( {aa' - bb'} \right) + \left( {ab' + a'b} \right)i} \cr
& \,\,\,\,\,\,\,\,\,\, = aa' - bb' - \left( {ab' + a'b} \right)i \cr
& \,\,\,\,\,\,\,\,\,\, = \left( {a - bi} \right)\left( {a' - b'i} \right) = \overline z .\overline {z'} \cr
& \overline {\left( {{{z'} \over z}} \right)} = \overline {\left( {{{z'.\overline z } \over {z.\overline z }}} \right)} = {1 \over {z.\overline z }}.\overline {z'} .\overline {\overline z } = {1 \over {z.\overline z }}.\overline {z'} .z = {{\overline {z'} } \over {\overline z }} \cr} \)
Bài 7 trang 190 SGK Đại số và Giải tích 12 Nâng cao
Chứng minh rằng với mọi số nguyên \(m > 0\), ta có:
\({i^{4m}} = 1\); \({i^{4m + 1}} = i\); \({i^{4m + 2}} = - 1\); \({i^{4m + 3}} = - i\)
Giải
Vì \({i^4} = {\left( {{i^2}} \right)^2} = {\left( { - 1} \right)^2} = 1\) nên \({i^{4m}} = 1\) với mọi m nguyên dương.
Từ đó suy ra \({i^{4m + 1}} = {i^{4m}}.i = i\)
\({i^{4m + 2}} = {i^{4m}}.{i^2} = - 1\)
\({i^{4m + 3}} = {i^{4m}}.{i^3} = - i\)
Bài 8 trang 190 SGK Giải tích 12 Nâng cao
Chứng minh rằng:
a)) Nếu vec tơ \(\overrightarrow u \) của mạt phẳng phức biểu diễn số phức z thì độ dài của vectơ \(\overrightarrow u \) là \(\left| {\overrightarrow u } \right| = \left| z \right|\), và từ đó nếu các điểm \({A_1},{A_2}\) theo thứ tự biểu diễn các số phức \({z_1},{z_2}\) thì \(\left| {\overrightarrow {{A_1}{A_2}} } \right| = |{z_2} - {z_1}|;\)
b) Với mọi số phức z, z', ta có \(\left| {zz'} \right| = \left| z \right|\left| {z'} \right|\) và khi \(z \ne 0\) thì \(\left| {{{z'} \over z}} \right| = {{|z'|} \over {|z|}};\)
c) Với mọi số phức z, z', ta có \(|z + z'| \le |z| + |z'|.\)
Giải
a) Nếu \(z=a+bi\;(a,b\in\mathbb R)\) thì \(|z| = \sqrt {{a^2} + {b^2}} \)
\(\overrightarrow u \) biểu diễn số phức z thì \(\overrightarrow u = \left( {a;b} \right)\) và \(|\overrightarrow u | = \sqrt {{a^2} + {b^2}} \) do đó \(\left| {\overrightarrow u } \right| = \left| z \right|\).
Nếu \({A_1},{A_2}\) theo thứ tự biểu diễn các số phức \({z_1},{z_2}\) thì \(\overrightarrow {{A_1}{A_2}} = \overrightarrow {O{A_2}} - \overrightarrow {O{A_1}} \) biểu diễn \({z_2} - {z_1}\) nên \(\left| {\overrightarrow {{A_1}{A_2}} } \right| = |{z_2} - {z_1}|.\)
b) \(z=a+bi;\;z'=a'+b'i\) thì \(|z{|^2} = {a^2} + {b^2};|z'{|^2} = a{'^2} + b{'^2}\) và \(z.z' = (aa' - bb') + (ab' + a'b)i\) nên
\(\eqalign{
& |z.z'{|^2} = {(aa' - bb')^2} + {(ab' + a'b)^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {(aa')^2} + {(bb')^2} + {(ab')^2} + {(a'b)^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = ({a^2} + {b^2})(a{'^2} + b{'^2}) = |z{|^2}.|z'{|^2} \cr
& \Rightarrow |zz'| = |z|.|z'| \cr} \)
Khi \(z \ne 0\) ta có:
\(\left| {{{z'} \over z}} \right| = \left| {{{z'\overline z } \over {|z{|^2}}}} \right| = {1 \over {|z{|^2}}}|z'.\overline z | \)
\(= {1 \over {|z{|^2}}}.\left| {z'} \right|.\left| {\overline z } \right| = {1 \over {|z{|^2}}}.|z'|.|z| = {{|z'|} \over {|z|}}\)
c) Giả sử \(\overrightarrow u \) biểu diễn z và \(\overrightarrow {u'} \) biểu diễn z' thì \(\overrightarrow u+\overrightarrow {u'} \) biểu diễn z+z'. Ta có:
\(\left| {\overrightarrow u + \overrightarrow {u'} } \right| = \left| {z + z'} \right|;\,\left| {\overrightarrow u } \right| = \left| z \right|;\,\left| {\overrightarrow {u'} } \right| = \left| {z'} \right|\)
Mà \(\left| {\overrightarrow u + \overrightarrow v } \right| \le \left| {\overrightarrow u } \right| + \left| {\overrightarrow v } \right|\) nên \(\left| {z + z'} \right| \le \left| z \right| + \left| {z'} \right|\)
Dấu "=" xảy ra khi \(z=0\) hoặc \(z'=0\).
Bài 9 trang 190 SGK Đại số và Giải tích 12 Nâng cao
Xác định tập hợp câc điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn từng điều kiện sau:
a) \(\left| {z - i} \right| = 1\) b) \(\left| {{{z - i} \over {z + i}}} \right| = 1\)
c) \(\left| z \right| = \left| {\overline z - 3 + 4i} \right|\)
Giải
a) Giả sử khi đó \(z - i = x + \left( {y - 1} \right)i\) và \(\left| {z - i} \right| = 1\)
\( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = 1\).
Tập hợp các điểm M biểu diễn số phức z là đường tròn tâm \(I\left( {0,1} \right)\) bán kính \(1\).
b) Giả sử
Ta có:\(\left| {{{z - i} \over {z + i}}} \right| = 1 \Leftrightarrow \left| {z - i} \right| = \left| {z + i} \right| \)
\(\Leftrightarrow \left| {x + \left( {y - 1} \right)i} \right| = \left| {x + \left( {y + 1} \right)i} \right|\)
\( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = {x^2} + {\left( {y + 1} \right)^2} \Leftrightarrow y = 0 \Leftrightarrow \) z là số thực.
Tập hợp M là trục thực \(Ox\).
c)
\(\left| z \right| = \left| {\overline z - 3 + 4i} \right| \Leftrightarrow \left| {x + yi} \right| = \left| {x - yi - 3 + 4i} \right|\)
\( \Leftrightarrow \left| {x + yi} \right| = \left| {\left( {x - 3} \right) + \left( {4 - y} \right)i} \right| \)
\(\Leftrightarrow {x^2} + {y^2} = {\left( {x - 3} \right)^2} + {\left( {4 - y} \right)^2}\)
\( \Leftrightarrow 6x + 8y = 25\)
Tập hợp M là đường thẳng có phương trình: \(6x + 8y = 25\)
Giaibaitap.me
Giải bài tập trang 190, 191 bài 1 số phức SGK Giải tích 12 Nâng cao. Câu 10: Chứng minh rằng với mọi số phức...
Giải bài tập trang 191 bài 1 số phức SGK Giải tích 12 Nâng cao. Câu 13: Giải các phương trình sau (với ẩn z)...
Giải bài tập trang 195, 196 bài 2 căn bậc hai của số phức và phương trình bậc hai SGK Giải tích 12 Nâng cao. Câu 17: Tìm các căn bậc hai của mỗi số phức sau...
Giải bài tập trang 199 bài 2 căn bậc hai của số phức và phương trình bậc hai SGK Giải tích 12 Nâng cao. Câu 23: Tìm nghiệm phức phương trình trong các trường hợp sau:...