Bài 9 trang 106 Sách bài tập (SBT) Toán Đại số 10
Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:
\({(\sqrt a + \sqrt b )^2} \ge 2\sqrt {2(a + b)\sqrt {ab} } \)
Gợi ý làm bài
\({(\sqrt a + \sqrt b )^2} = a + b + 2\sqrt {ab} \ge 2\sqrt {(a + b).2\sqrt {ab} } \)
Bài 10 trang 106 Sách bài tập (SBT) Toán Đại số 10
Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:
\({1 \over a} + {1 \over b} + {1 \over c} \ge {9 \over {a + b + c}}\)
Gợi ý làm bài
\((a + b + c)({1 \over a} + {1 \over b} + {1 \over c}) = 1 + 1 + 1 + ({a \over b} + {b \over a}) + ({a \over c} + {c \over a}) + ({b \over c} + {c \over b})\)
\( \ge 3 + 2 + 2 + 2 = 9 = > {1 \over a} + {1 \over b} + {1 \over c} \ge {9 \over {a + b + c}}\)
Bài 11 trang 106 Sách bài tập (SBT) Toán Đại số 10
Tìm giá trị nhỏ nhất của hàm số
\(y = {4 \over x} + {9 \over {1 - x}}\) với 0 < x < 1.
Gợi ý làm bài
\(y = {{4(x + 1 - x)} \over x} + {{9(x + 1 - x)} \over {1 - x}}\)
=\(4 + 9 + {{4(1 - x)} \over x} + 9.{x \over {1 - x}} \ge 13 + 2\sqrt {4.{{(1 - x)} \over x}.9.{x \over {1 - x}}} = 25\)
=> \(y \ge 25,\forall x \in (0;1)\)
Đẳng thức y = 25 xảy ra khi và chỉ khi
\(\left\{ \matrix{
{{4(1 - x)} \over x} = {{9x} \over {1 - x}} = 6 \hfill \cr
x \in (0;1) \hfill \cr} \right.\)
hay \(x = {2 \over 5}\)
Vậy giá trị nhỏ nhất của hàm số đã cho bằng 25 đạt tại \(x = {2 \over 5}\).
Giaibaitap.me
Giải bài tập trang 106 bài 1 bất đẳng thức Sách bài tập (SBT) Toán Đại số 10. Câu 12: Tìm giá trị lớn nhất của hàm số ...
Giải bài tập trang 109, 110 bài 2 bất phương trình và hệ bất phương trình một ẩn Sách bài tập (SBT) Toán Đại số 10. Câu 15: Viết điều kiện của mỗi bất phương trình sau...
Giải bài tập trang 110 bài 2 bất phương trình và hệ bất phương trình một ẩn Sách bài tập (SBT) Toán Đại số 10. Câu 19: Nếu nhân hai vế bất phương trình...
Giải bài tập trang 110, 111 bài 2 bất phương trình và hệ bất phương trình một ẩn Sách bài tập (SBT) Toán Đại số 10. Câu 23: Giải các bất phương trình sau...