Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 10

CHƯƠNG IV: BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH

Giải bài tập trang 110 bài 2 bất phương trình và hệ bất phương trình một ẩn Sách bài tập (SBT) Toán Đại số 10. Câu 19: Nếu nhân hai vế bất phương trình...

Bài 19 trang 110 Sách bài tập (SBT) Toán Đại số 10

Nếu nhân hai vế bất phương trình \({1 \over x} \le 1\) với x ta được bất phương trình nào? Bất phương trình nhận được có tương đương với bất phương trình đã cho hay không? Vì sao?

Gợi ý làm bài

Nếu nhân hai vế của \({1 \over x} \le 1\) với x, ta được bất phương trình mới \(x \ge 1\) ; bất phương trình này không tương đương với bất phương trình đã cho vì đã làm mất đi tất cả các nghiệm âm của nó.

Ghi nhớ: Không được nhân hay chia hai vế của một bất phương trình với một biểu thức chứa ẩn mà không biết dấu của biểu thức đó.

 

Bài 20 trang 110 Sách bài tập (SBT) Toán Đại số 10

Nếu bình phương hai vế (khử căn thức chứa ẩn) của bất phương trình \(\sqrt {1 - x}  \le x\) ta nhận được bất phương trình nào? Bất phương trình nhận được có tương đương với bất phương trình đã cho hay không? Vì sao?

Gợi ý làm bài

Nếu bình phương hai vế (khử căn thức chứa ẩn) của bất phương trình \(\sqrt {1 - x}  \le x\) ta nhận được bất phương trình \(1 - x \le {x^2}\)

Bất phương trình nhận được không tương đương với bất phương trình đã cho vì có x = 2 không phải là nghiệm bất phương trình đã cho nhưng lại là nghiệm của bất phương trình mới nhận được sau phép bình phương.

Ghi nhớ: Không được bình phương hai vế một bất phương trình vì có thể làm xuất hiện nghiệm ngoại lai.

 


Bài 21 trang 110 Sách bài tập (SBT) Toán Đại số 10

Hãy viết điều kiện của bất phương trình sau rồi suy ra rằng bất phương trình đó vô nghiệm.

\({{\sqrt {5 - x} } \over {\sqrt {x - 10} (\sqrt x  + 2)}} < {{4 - {x^2}} \over {(x - 4)(x + 5)}}\)

Gợi ý làm bài

Điều kiện của bất phương trình đã cho là:

\(\left\{ \matrix{
5 - x \ge 0(a) \hfill \cr
x - 10 > 0(b) \hfill \cr
x \ge 0(c) \hfill \cr
(x - 4)(x + 5) \ne 0 \hfill \cr} \right.\)

Nếu x là một nghiệm của bất phương trình đã cho thì trước hết x phải thỏa mãn (a) và (b), suy ra $$(5 - x) + (x - 10) > 0$$, do đó -5 > 0, vô lí. Vì vậy bất phương trình đã cho vô nghiệm.

 


Bài 22 trang 110 Sách bài tập (SBT) Toán Đại số 10

Chứng minh rằng các bất phương trình sau đây vô nghiệm:

a) \({x^2} + {1 \over {{x^2} + 1}} < 1\)

b) \(\sqrt {{x^2} - x + 1}  + {1 \over {\sqrt {{x^2} - x + 1} }} < 2\)

c) \(\sqrt {{x^2} + 1}  + \sqrt {{x^4} - {x^2} + 1}  < 2\root 4 \of {{x^6} + 1} \)

Gợi ý làm bài

a) Theo bất đẳng thức Cô – si ta có: \({x^2} + 1) + {1 \over {({x^2} + 1)}} \ge 2 =  > {x^2} + {1 \over {{x^2} + 1}} \ge 1\forall x\).

Vì vậy bất phương trình đã cho vô nghiệm.

b) Tương tự a)

c) Tương tự a) (sử dụng bất đẳng thức \((a + b)({a^2} - ab + {b^2}) = {a^3} + {b^3}\) và đồng nhất thức \(\sqrt {\sqrt a }  = \root 4 \of a \).

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác