Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 10

CHƯƠNG IV: BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH

Giải bài tập trang 109, 110 bài 2 bất phương trình và hệ bất phương trình một ẩn Sách bài tập (SBT) Toán Đại số 10. Câu 15: Viết điều kiện của mỗi bất phương trình sau...

Bài 15 trang 109 Sách bài tập (SBT) Toán Đại số 10

Viết điều kiện của mỗi bất phương trình sau:

a) \(2x - 3 - {1 \over {x - 5}} < {x^2} - x;\)

b) \({x^3} \le 1;\)

c) \(\sqrt {{x^2} - x - 2}  < {1 \over 2};\)

d) \(\root 3 \of {{x^4} + x - 1}  + {x^2} - 1 \ge 0.\)

Gợi ý làm bài

a) Điều kiện là $$\(x - 5 \ne 0$\)

b) Điều kiện là x tùy ý.

c) Điều kiện là \({x^2} - x - 2 \ge 0\)

d) Điều kiện là x tùy ý.

 


Bài 16 trang 110 Sách bài tập (SBT) Toán Đại số 10

Chứng tỏ rằng x = -7 không phải là nghiệm của bất phương trình \(x + 3 - {1 \over {x + 7}} < 2 - {1 \over {x + 7}}\) nhưng lại là nghiệm của bất phương trình x + 3 < 2.

Gợi ý làm bài

làm hai vế của bất phương trình đầu vô nghĩa nên x = -7 không là nghiệm của bất phương trình đó. Mặt khác, x = -7 thỏa mãn bất phương trình sau nên x = -7 là nghiệm của bất phương trình này.

Nhận xét:Phép giản ước số hạng \( - {1 \over {x + 7}}\) ở hai vế của bất phương trình đầu làm mở rộng tập xác định của bất phương trình đó, vì vậy có thể dẫn đến nghiệm ngoại lai.

 

Bài 17 trang 110 Sách bài tập (SBT) Toán Đại số 10

Xét xem x = -3 là nghiệm của bất phương trình nào trong hai bất phương trình sau 3x + 1 < x + 3 (1) và \({(3x + 1)^2} < {(x + 3)^2}\) (2)

Từ đó suy ra rằng phép bình phương hai vế một bất phương trình không phải là phép biến đổi tương đương.

Gợi ý làm bài

Thử trực tiếp ta thấy ngay x = -3 là nghiệm của bất phương trình (1) nhưng không là nghiệm bất phương trình (2), vì vậy (1) và (2) không tương đương do đó phép bình phương hai vế một bất phương trình không phải là phép biến đổi tương đương.

 

Bài 18 trang 110 Sách bài tập (SBT) Toán Đại số 10

Viết điều kiện của mỗi bất phương trình đã cho sau đây rồi cho biết các bất phương trình này có tương đương đương với nhau hay không:

\(\sqrt {(x - 1)(x - 2)}  \ge x\) (1) và \(\sqrt {x - 1} .\sqrt {x - 2}  \ge x(2)\)

Gợi ý làm bài

Điều kiện của (1) là , còn điều kiện của (2) là  \(\left\{ \matrix{
x - 1 \ge 0 \hfill \cr
x - 2 \ge 0 \hfill \cr} \right.\)

Hai bất phương trình đã cho không tương đương với nhau vì có x = -1 là một nghiệm của (1) nhưng không là nghiệm của (2).

Nhận xét:Phép biến đổi đồng nhất \(\sqrt a .\sqrt b  = \sqrt {ab} \) làm mở rộng tập xác định, dẫn tới thay đổi điều kiện của phương trình, do đó có thể làm xuất hiện nghiệm ngoại lai.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác