Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 10 Nâng cao

CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Giải bài tập trang 118, 199 bài ôn tập chương III phương pháp tọa độ trong mặt phẳng SGK Hình học 10 nâng cao. Câu 5: Một hình bình hành có hai cạnh nằm trên hai đường thẳng x + 3y - 6 = 0 và 2x - 5y - 1 = 0...

Bài 5 trang 118 SGK Hình học 10 nâng cao

Một hình bình hành có hai cạnh nằm trên hai đường thẳng x + 3y - 6 = 0 và 2x - 5y - 1 = 0. Biết hình bình hành đó có tâm đối xứng là I(3, 5). Hãy viết phương trình hai cạnh còn lại của hình bình hành đó.

Giải

 

Giả sử hình bình hành ABCD có tâm I

\(\eqalign{
& AB:\,\,x + 3y - 6 = 0 \cr
& AD:\,\,2x - 5y - 1 = 0 \cr} \) 

Tọa độ của A là nghiệm của hệ

\(\left\{ \matrix{
x + 3y - 6 = 0 \hfill \cr
2x - 5y - 1 = 0 \hfill \cr} \right.\,\,\, \Leftrightarrow \,\,\,\left\{ \matrix{
x = 3\, \hfill \cr
y = 1 \hfill \cr} \right.\)

Vậy \(A(3 ; 1)\).

I là trung điểm của AC nên

\(\left\{ \matrix{
{x_I} = {1 \over 2}({x_A} + {x_C}) \hfill \cr
{y_I} = {1 \over 2}({y_A} + {y_C}) \hfill \cr} \right.\,\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
{x_C} = 2{x_I} - {x_A} = 3 \hfill \cr
{y_C} = 2{y_I} - {y_A} = 9 \hfill \cr} \right.\)

 Vậy \(C(3 ; 9)\).

BC là đường thẳng qua C và song song với AD nên BC có phương trình:

\(2(x - 3) - 5(y - 9) = 0\,\, \Leftrightarrow \,\,2x - 5y + 39 = 0\)

CD là đường thẳng qua C và song song với AB nên CD có phương trình:

\(1(x - 3) + 3(y - 9) = 0\,\, \Leftrightarrow \,\,x + 3y - 30 = 0\)

 Vậy hai cạnh còn lại của hình bình hành là

\(2x - 5y + 39 = 0\) và \(x + 3y - 30 = 0\)

 


Bài 6 trang 119 SGK Hình học 10 nâng cao

Cho phương trình

\({x^2} + {y^2} + mx - 2(m + 1)y + 1 = 0.\,\,\,\,\,(1)\)

a) Với giá trị nào của m thì (1) là phương trình đường tròn?

b) Tìm tập hợp tâm của các đường tròn nói ở câu a).

Giải

a) Ta có: \(2a = m\,,\,2b =  - 2(m + 1)\,,\,\,c = 1\)

\(\Rightarrow \,\,a = {m \over 2}\,,\,\,b =  - (m + 1)\,,\,\,c = 1\)

(1) là đường tròn \( \Leftrightarrow \,\,{a^2} + {b^2} - c > 0\,\, \Leftrightarrow \,\,{{{m^2}} \over 4} + {(m + 1)^2} - 1 > 0\)

\( \Leftrightarrow \,\,{5 \over 4}{m^2} + 2m > 0\,\,\, \Leftrightarrow \,\,\,\left[ \matrix{
m < - {8 \over 5}\, \hfill \cr
m > 0 \hfill \cr} \right.\,\,\) 

b) Với điều kiện \(m <  - {8 \over 5}\) hoặc m > 0 thì (1) là phương trình đường tròn có tâm \(I\left( { - {m \over 2}\,;\,m + 1} \right)\) .

Ta có tọa độ của I 

\(\left\{ \matrix{
x = - {m \over 2} \hfill \cr
y = m + 1 \hfill \cr} \right.\)

Khử m từ hoành độ và tung độ của I ta được \(2x + y - 1 = 0\) vì  \(m <  - {8 \over 5}\) hoặc m > 0 nên \(x =  - {m \over 2} > {4 \over 5}\) hoặc \(x < 0\) .

Vậy tập hợp tâm I của đường tròn là 

\(\left\{ \matrix{
2x + y - 1 = 0 \hfill \cr
\left[ \matrix{
x < 0 \hfill \cr
x > {4 \over 5} \hfill \cr} \right.\, \hfill \cr} \right.\)

 


Bài 7 trang 119 SGK Hình học 10 nâng cao

a) Biết đường tròn (C) có phương trình \({x^2} + {y^2} + 2ax + 2by + c = 0.\) Chứng minh rằng phương tích của điểm \(M({x_0};{y_0})\) đối với đường tròn (C) bằng \(x_0^2 + y_0^2 + 2a{x_0} + 2b{y_0} + c.\)

b) Chứng minh rằng nếu hai đường tròn không đồng tâm thì tập hợp các điểm có cùng phương tích đối với hai đường tròn là một đường thẳng (gọi là trục đẳng phương của hai đường tròn).

Giải

a) Đường tròn  (C) có tâm I(-a, -b) ,bán kính \(R = \sqrt {{a^2} + {b^2} - c} \)

Phương tích của điểm \(M({x_0};{y_0})\) đối với đường tròn (C) là

\(\eqalign{
& {\wp _{{M_{{/_{(C)}}}}}} = M{I^2} - {R^2} \cr&\,\,\,\,\,\,\,\,\,\,\,\,\,\,= {({x_o} + a)^2} + {({y_o} + b)^2} - ({a^2} + {b^2} - c) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\, = x_o^2 + y_o^2 + 2a{x_o} + 2b{y_o} + c \cr} \)

b) Cho hai đường tròn không đồng tâm

\(\eqalign{
({C_1})\, & & :\,\,{x^2} + {y^2} + 2{a_1}x + 2{b_1}y + {c_1} \cr
({C_2})\, & & :\,\,{x^2} + {y^2} + 2{a_2}x + 2{b_2}y + {c_2} \cr} \) 

Gọi \(M({x_0};{y_0})\) là điểm có cùng phương tích đối với \(({C_1})\) và \(({C_2})\)  thì

\(\eqalign{
& \,\,\,\,\,\,\,x_o^2 + y_o^2 + 2{a_1}{x_o} + 2{b_1}{y_o} + {c_1} = x_o^2 + y_o^2 \cr&+ 2{a_2}{x_o} + 2{b_2}{y_o} + {c_2} \cr
& \Leftrightarrow \,\,2({a_1} - {a_2}){x_o} + 2({b_1} - {b_2}){y_o} + {c_1} - {c_2} = 0\,\,\,(1) \cr} \)

Vì \(({C_1})\) và \(({C_2})\) không đồng tâm nên \({a_1} - {a_2}\) và \({b_1} - {b_2}\) không đồng thời bằng 0 ( tức \({({a_1} - {a_2})^2} + {({b_1} - {b_2})^2} \ne 0\))

Do đó \(M({x_0};{y_0})\) nằm trên đường thẳng có phương trình:

\(\Delta \,\,:\,\,2({a_1} - {a_2})x + 2({b_1} - {b_2})y + {c_1} - {c_2} = 0\)

Vậy tập hợp điểm M là đường thẳng Δ .

 


Bài 8 trang 119 SGK Hình học 10 nâng cao

Cho hai đường tròn có phương trình \({x^2} + {y^2} + 2{a_1}x + 2{b_1}y + {c_1} = 0\) và \({x^2} + {y^2} + 2{a_2}x + 2{b_2}y + {c_2} = 0.\) Giả sử chúng cắt nhau ở hai điểm M,N. Viết phương trình đường thẳng MN.

Giải

Hai đường tròn cắt nhau tại M, N thì trục đẳng phương của chùng chính là đường thẳng MN.

Áp dụng bài 7 thì MN có phương trình là

\(MN\,:\,\,2({a_1} - {a_2})x + 2({b_1} - {b_2})y + {c_1} - {c_2} = 0\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác