Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 10 Nâng cao

CHƯƠNG I. VECTƠ

Giải bài tập trang 31 bài 5 trục tọa độ và hệ trục tọa độ SGK Hình học 10 Nâng cao. Câu 33: Trong các mệnh đề sau, mệnh đề nào đúng ?....

Bài 33 trang 31 SGK Hình học 10 Nâng cao

Bài 33. Trong các mệnh đề sau, mệnh đề nào đúng ?

a) Tọa độ của điểm \(A\) bằng tọa độ của vec tơ \(\overrightarrow {OA} \), với \(O\) là gốc tọa độ.

b) Hoành độ của một điểm bằng \(0\) thì điểm đó nằm trên trục hoành.

c) Điểm \(A\) nằm trên trục tung thì \(A\) có hoành đô bằng \(0\).

d) \(P\) là trung điểm của đoạn thẳng \(AB\) khi và chỉ khi hoành độ điểm \(P\) bằng trung bình cộng các hoành độ của hai điểm \(A\) và \(B\).

e) Tứ giác \(ABCD\) là hình bình hành khi và chỉ khi \({x_A} + {x_C} = {x_B} + {x_D}\) và \({y_A} + {y_C} = {y_B} + {y_D}\).

Hướng dẫn trả lời

a) Đúng.          

 b) Sai vì hoành độ của một điểm bằng 0 thì điểm đó nằm trên trục tung.

c) Đúng.

d) Sai vì \(P\) là trung điểm của đoạn thẳng \(AB\) khi và chỉ khi hoành độ điểm \(P\) bằng trung bình cộng các  hoành độ của hai điểm \(A\) và \(B\); tung độ điểm \(P\) bằng trung bình cộng các  tung độ của hai điểm \(A\) và \(B\).

e) Đúng vì tứ giác \(ABCD\) là hình bình hành

\( \Leftrightarrow \,\,I\) vừa là trung điểm của \(AC\), vừa là trung điểm của \(BD\)

\( \Leftrightarrow \,\,\left\{ \matrix{
2{x_I} = {x_A} + {x_C} = {x_B} + {x_D} \hfill \cr
2{y_I} = {y_A} + {y_C} = {y_B} + {y_D} \hfill \cr} \right.\)

 


Bài 34 trang 31 SGK Hình học 10 Nâng cao

Bài 34. Trong mặt phẳng tọa độ, cho ba điểm \(A( - 3;4)\,,\,B(1;1)\,,\,C(9; - 5).\)

a) Chứng minh ba điểm \(A, B, C\) thẳng hàng.

b) Tìm tọa độ điểm \(D\) sao cho \(A\) là trung điểm của \(BD\).

c) Tìm tọa độ điểm \(E\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.

Hướng dẫn trả lời

a) Ta có

\(\,\,\,\left. \matrix{
\overrightarrow {AB} = (1 + 3\,;\,1 - 4) = (4\,;\, - 3) \hfill \cr
\overrightarrow {AC} = (9 + 3\,;\, - 5 - 4) = (12\,;\, - 9) \hfill \cr} \right\}\, \Rightarrow \,\overrightarrow {AC} \, = 3\overrightarrow {AB} \)

Vậy ba điểm \(A, B, C\) thẳng hàng.

b) Gọi \(D\,({x_D}\,;\,{y_D})\). Do \(A\) là trung điểm của \(BD\) nên ta có

\(\left\{ \matrix{
{x_A} = {{{x_B} + {x_D}} \over 2} \hfill \cr
{y_A} = {{{y_B} + {y_D}} \over 2} \hfill \cr} \right.\,\, \Leftrightarrow \left\{ \matrix{
- 3 = {{1 + {x_D}} \over 2} \hfill \cr
4 = {{1 + {y_D}} \over 2} \hfill \cr} \right.\,\, \Leftrightarrow \left\{ \matrix{
{x_D} = - 7 \hfill \cr
{y_D} = 7 \hfill \cr} \right.\)

Vậy \(D( - 7\,;\,7)\).

c) Gọi \(E\,({x_E}\,;\,0)\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.

Do đó có số \(k\) thỏa mãn \(\overrightarrow {AE}  = k\overrightarrow {AB} \)

\(\eqalign{
& \overrightarrow {AB} = \left( {4\,;\, - 3} \right)\,;\,\,\overrightarrow {AE} = \left( {{x_E} + 3\,;\, - 4} \right) \cr
& \Rightarrow \,\,\left\{ \matrix{
{x_E} + 3 = 4k \hfill \cr
- 4 = - 3k \hfill \cr} \right.\,\, \Rightarrow \,\left\{ \matrix{
k = {4 \over 3} \hfill \cr
{x_E} = {7 \over 3} \hfill \cr} \right.\,\,\, \Rightarrow \,E\,\left( {{7 \over 3}\,;\,0} \right)\, \cr} \)

 


Bài 35 trang 31 SGK Hình học 10 Nâng cao

Bài 35. Cho điểm \(M(x\,;y).\) Tìm tọa độ của các điểm

a) \({M_1}\) đối xứng với \(M\) qua trục \(Ox\).

b) \({M_2}\) đối xứng với \(M\) qua trục \(Oy\).

c) \({M_3}\) đối xứng với \(M\) qua gốc tọa độ \(O\).

Hướng dẫn trả lời

a) \({M_1}(x\,;\, - y);\)                             

b) \({M_2}( - x\,;\,y);\)                           

c) \({M_3}( - x\,;\, - y).\) 

 


Bài 36 trang 31 SGK Hình học 10 Nâng cao

Bài 36. Trong mặt phẳng tọa độ, cho ba điểm \(A( - 4\,;1)\,,\,B(2\,;4)\,,\,C(2\,; - 2).\)

a) Tìm tọa độ của trọng tâm tam giác \(ABC\).

b) Tìm tọa độ điểm \(D\) sao cho \(C\) là trọng tâm tam giác \(ABD\).

c)  Tìm tọa độ điểm \(E\) sao cho \(ABCE\) là hình bình hành.

Hướng dẫn trả lời

a) Gọi \(G\) là trọng tâm tam giác \(ABC\), ta có

\(\eqalign{
& \left\{ \matrix{
{x_G} = {1 \over 3}({x_A} + {x_B} + {x_C}) = {1 \over 3}( - 4 + 2 + 2) = 0 \hfill \cr
{y_G} = {1 \over 3}({y_A} + {y_B} + {y_C}) = {1 \over 3}(1 + 4 - 2) = 1 \hfill \cr} \right.\,\, \cr
& \Rightarrow \,\,G\,(0\,;\,1). \cr} \)

b) Gọi \(D\,({x_{D\,}}\,;\,{y_D})\)  sao cho \(C\) là trọng tâm tam giác \(ABD\). Ta có

\(\eqalign{
& \left\{ \matrix{
{x_C} = {1 \over 3}({x_A} + {x_B} + {x_D}) \hfill \cr
{y_C} = {1 \over 3}({y_A} + {y_B} + {y_D}) \hfill \cr} \right.\,\, \Rightarrow \left\{ \matrix{
2 = {1 \over 3}( - 4 + 2 + {x_D}) \hfill \cr
- 2 = {1 \over 3}(1 + 4 + {y_D}) \hfill \cr} \right. \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\left\{ \matrix{
{x_D} = 8 \hfill \cr
{y_D} = - 11 \hfill \cr} \right. \cr
& \Rightarrow \,\,D\,(8\,;\, - 11) \cr} \)

c) Gọi \(E({x_E}\,;\,{y_E})\) sao cho \(ABCE\) là hình bình hành. Ta có

\(\eqalign{
& \overrightarrow {AB} = \overrightarrow {EC} \,\,\,\, \Leftrightarrow \,\,(6\,;\,3) = (2 - {x_E}\,;\, - 2 - {y_E}) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
{x_E} = - 4 \hfill \cr
{y_E} = - 5 \hfill \cr} \right. \cr
& \Rightarrow \,\,E\,( - 4\,;\, - 5). \cr} \)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác