Bài 33 trang 31 SGK Hình học 10 Nâng cao
Bài 33. Trong các mệnh đề sau, mệnh đề nào đúng ?
a) Tọa độ của điểm \(A\) bằng tọa độ của vec tơ \(\overrightarrow {OA} \), với \(O\) là gốc tọa độ.
b) Hoành độ của một điểm bằng \(0\) thì điểm đó nằm trên trục hoành.
c) Điểm \(A\) nằm trên trục tung thì \(A\) có hoành đô bằng \(0\).
d) \(P\) là trung điểm của đoạn thẳng \(AB\) khi và chỉ khi hoành độ điểm \(P\) bằng trung bình cộng các hoành độ của hai điểm \(A\) và \(B\).
e) Tứ giác \(ABCD\) là hình bình hành khi và chỉ khi \({x_A} + {x_C} = {x_B} + {x_D}\) và \({y_A} + {y_C} = {y_B} + {y_D}\).
Hướng dẫn trả lời
a) Đúng.
b) Sai vì hoành độ của một điểm bằng 0 thì điểm đó nằm trên trục tung.
c) Đúng.
d) Sai vì \(P\) là trung điểm của đoạn thẳng \(AB\) khi và chỉ khi hoành độ điểm \(P\) bằng trung bình cộng các hoành độ của hai điểm \(A\) và \(B\); tung độ điểm \(P\) bằng trung bình cộng các tung độ của hai điểm \(A\) và \(B\).
e) Đúng vì tứ giác \(ABCD\) là hình bình hành
\( \Leftrightarrow \,\,I\) vừa là trung điểm của \(AC\), vừa là trung điểm của \(BD\)
\( \Leftrightarrow \,\,\left\{ \matrix{
2{x_I} = {x_A} + {x_C} = {x_B} + {x_D} \hfill \cr
2{y_I} = {y_A} + {y_C} = {y_B} + {y_D} \hfill \cr} \right.\)
Bài 34 trang 31 SGK Hình học 10 Nâng cao
Bài 34. Trong mặt phẳng tọa độ, cho ba điểm \(A( - 3;4)\,,\,B(1;1)\,,\,C(9; - 5).\)
a) Chứng minh ba điểm \(A, B, C\) thẳng hàng.
b) Tìm tọa độ điểm \(D\) sao cho \(A\) là trung điểm của \(BD\).
c) Tìm tọa độ điểm \(E\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.
Hướng dẫn trả lời
a) Ta có
\(\,\,\,\left. \matrix{
\overrightarrow {AB} = (1 + 3\,;\,1 - 4) = (4\,;\, - 3) \hfill \cr
\overrightarrow {AC} = (9 + 3\,;\, - 5 - 4) = (12\,;\, - 9) \hfill \cr} \right\}\, \Rightarrow \,\overrightarrow {AC} \, = 3\overrightarrow {AB} \)
Vậy ba điểm \(A, B, C\) thẳng hàng.
b) Gọi \(D\,({x_D}\,;\,{y_D})\). Do \(A\) là trung điểm của \(BD\) nên ta có
\(\left\{ \matrix{
{x_A} = {{{x_B} + {x_D}} \over 2} \hfill \cr
{y_A} = {{{y_B} + {y_D}} \over 2} \hfill \cr} \right.\,\, \Leftrightarrow \left\{ \matrix{
- 3 = {{1 + {x_D}} \over 2} \hfill \cr
4 = {{1 + {y_D}} \over 2} \hfill \cr} \right.\,\, \Leftrightarrow \left\{ \matrix{
{x_D} = - 7 \hfill \cr
{y_D} = 7 \hfill \cr} \right.\)
Vậy \(D( - 7\,;\,7)\).
c) Gọi \(E\,({x_E}\,;\,0)\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.
Do đó có số \(k\) thỏa mãn \(\overrightarrow {AE} = k\overrightarrow {AB} \)
\(\eqalign{
& \overrightarrow {AB} = \left( {4\,;\, - 3} \right)\,;\,\,\overrightarrow {AE} = \left( {{x_E} + 3\,;\, - 4} \right) \cr
& \Rightarrow \,\,\left\{ \matrix{
{x_E} + 3 = 4k \hfill \cr
- 4 = - 3k \hfill \cr} \right.\,\, \Rightarrow \,\left\{ \matrix{
k = {4 \over 3} \hfill \cr
{x_E} = {7 \over 3} \hfill \cr} \right.\,\,\, \Rightarrow \,E\,\left( {{7 \over 3}\,;\,0} \right)\, \cr} \)
Bài 35 trang 31 SGK Hình học 10 Nâng cao
Bài 35. Cho điểm \(M(x\,;y).\) Tìm tọa độ của các điểm
a) \({M_1}\) đối xứng với \(M\) qua trục \(Ox\).
b) \({M_2}\) đối xứng với \(M\) qua trục \(Oy\).
c) \({M_3}\) đối xứng với \(M\) qua gốc tọa độ \(O\).
Hướng dẫn trả lời
a) \({M_1}(x\,;\, - y);\)
b) \({M_2}( - x\,;\,y);\)
c) \({M_3}( - x\,;\, - y).\)
Bài 36 trang 31 SGK Hình học 10 Nâng cao
Bài 36. Trong mặt phẳng tọa độ, cho ba điểm \(A( - 4\,;1)\,,\,B(2\,;4)\,,\,C(2\,; - 2).\)
a) Tìm tọa độ của trọng tâm tam giác \(ABC\).
b) Tìm tọa độ điểm \(D\) sao cho \(C\) là trọng tâm tam giác \(ABD\).
c) Tìm tọa độ điểm \(E\) sao cho \(ABCE\) là hình bình hành.
Hướng dẫn trả lời
a) Gọi \(G\) là trọng tâm tam giác \(ABC\), ta có
\(\eqalign{
& \left\{ \matrix{
{x_G} = {1 \over 3}({x_A} + {x_B} + {x_C}) = {1 \over 3}( - 4 + 2 + 2) = 0 \hfill \cr
{y_G} = {1 \over 3}({y_A} + {y_B} + {y_C}) = {1 \over 3}(1 + 4 - 2) = 1 \hfill \cr} \right.\,\, \cr
& \Rightarrow \,\,G\,(0\,;\,1). \cr} \)
b) Gọi \(D\,({x_{D\,}}\,;\,{y_D})\) sao cho \(C\) là trọng tâm tam giác \(ABD\). Ta có
\(\eqalign{
& \left\{ \matrix{
{x_C} = {1 \over 3}({x_A} + {x_B} + {x_D}) \hfill \cr
{y_C} = {1 \over 3}({y_A} + {y_B} + {y_D}) \hfill \cr} \right.\,\, \Rightarrow \left\{ \matrix{
2 = {1 \over 3}( - 4 + 2 + {x_D}) \hfill \cr
- 2 = {1 \over 3}(1 + 4 + {y_D}) \hfill \cr} \right. \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\left\{ \matrix{
{x_D} = 8 \hfill \cr
{y_D} = - 11 \hfill \cr} \right. \cr
& \Rightarrow \,\,D\,(8\,;\, - 11) \cr} \)
c) Gọi \(E({x_E}\,;\,{y_E})\) sao cho \(ABCE\) là hình bình hành. Ta có
\(\eqalign{
& \overrightarrow {AB} = \overrightarrow {EC} \,\,\,\, \Leftrightarrow \,\,(6\,;\,3) = (2 - {x_E}\,;\, - 2 - {y_E}) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
{x_E} = - 4 \hfill \cr
{y_E} = - 5 \hfill \cr} \right. \cr
& \Rightarrow \,\,E\,( - 4\,;\, - 5). \cr} \)
Giaibaitap.me
Giải bài tập trang 34 bài ôn tập chương 1 vecto SGK Hình học 10 Nâng cao. Câu 1: Cho tam giác ABC . Hãy xác định các vectơ...
Giải bài tập trang 35 ôn tập chương 1 vecto SGK Hình học 10 Nâng cao. Câu 5: Chứng minh rằng với...
Giải bài tập trang 35 ôn tập chương 1 vecto SGK Hình học 10 Nâng cao. Câu 1: Cho tam giác...
Giải bài tập trang 36 ôn tập chương 1 vecto SGK Hình học 10 Nâng cao. Câu 5: Cho điểm B nằm giữa hai điểm A và C...