Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.7 trên 6 phiếu

Giải bài tập Toán 10 Nâng cao

CHƯƠNG II. TÍCH VÔ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG

Giải bài tập trang 66 bài 3 hệ thức lượng trong tam giác SGK Hình học 10 nâng cao. Câu 31: Chứng minh rằng...

Bài 31 trang 66 SGK Hình học 10 nâng cao

Bài 31. Gọi \(S\) là diện tích và \(R\) là bán kính đường tròn ngoại tiếp tam giác \(ABC\). Chứng minh rằng \(S = 2{R^2}\sin A\sin B\sin C\).

Hướng dẫn trả lời

Áp dụng công thức tính diện tích và định lí sin trong tam giác \(ABC\) .Ta có

\(\eqalign{
& S = {{abc} \over {4R}} = {{(2R\sin A).(2R\sin B).(2R\sin C)} \over {4R}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2{R^2}\sin A\sin B\sin C \cr} \)


Bài 32 trang 66 SGK Hình học 10 nâng cao

Bài 32. Chứng minh rằng diện tích của một tứ giác bằng nửa tích hai đường chéo và sin của góc hợp bởi hai đường chéo đó.

Hướng dẫn trả lời

 

Gọi \(I\) là giao điểm của hai đường chéo \(AC, BD\) và \(\widehat {AIB} = \alpha \).

Ta có \({S_{ABI}} = {1 \over 2}AI.BI.\sin \alpha \,\,,\,\,\,{S_{ADI}} = {1 \over 2}AI.DI.\sin ({180^0} - \alpha ) = \,{1 \over 2}AI.DI.\sin \alpha \,\)

Suy ra \({S_{ABD}} = {S_{ABI}} + {S_{ADI}} = {1 \over 2}AI.(BI + DI).\sin \alpha  = {1 \over 2}AI.BD.\sin \alpha \)

Tương tự ta suy ra \({S_{BCD}} = {S_{BIC}} + {S_{CDI}} = {1 \over 2}CI.BD.\sin \alpha \)

Từ đó suy ra

\({S_{ABCD}} = {S_{ABD}} + {S_{BCD}} = {1 \over 2}.BD.(AI + CI).\sin \alpha  = {1 \over 2}.BD.AC.\sin \alpha. \)

 


Bài 33 trang 66 SGK Hình học 10 nâng cao

Bài 33. Giải tam giác \(ABC\), biết

a) \(c = 14,\,\widehat A = {60^0},\,\widehat B = {40^0}\);                                

b) \(b = 4,5,\,\widehat A = {30^0},\,\widehat C = {75^0}\);

c) \(c = 35,\,\widehat A = {40^0},\,\widehat C = {120^0}\);                              

d) \(a = 137,5;\;\widehat B = {83^0},\,\widehat C = {57^0}\).

Hướng dẫn trả lời

a)  Ta có \(\widehat C = {180^0} - {60^0} - {40^0} = {80^0}\)

Áp dụng định lí sin :  

\(\eqalign{
& \,\,\,\,\,\,{a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}} = {{14} \over {{\mathop{\rm s}\nolimits} {\rm{in8}}{{\rm{0}}^0}}}\,\,\,\, \Rightarrow \,\,a = {{14} \over {{\mathop{\rm s}\nolimits} {\rm{in8}}{{\rm{0}}^0}}}.\sin {60^0} \approx 12,3 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b = {{14} \over {{\mathop{\rm s}\nolimits} {\rm{in8}}{{\rm{0}}^0}}}.\sin {40^0} \approx 9,1 \cr} \)

b) Ta có \(\widehat B = {180^0} - {30^0} - {75^0} = {75^0}\)

Áp dụng định lí sin

\(\eqalign{
& \,\,\,\,\,\,{a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}} = {{4,5} \over {{\mathop{\rm s}\nolimits} {\rm{in7}}{{\rm{5}}^0}}}\,\,\, \Rightarrow \,\,a = {{4,5} \over {{\mathop{\rm s}\nolimits} {\rm{in7}}{{\rm{5}}^0}}}.\sin {30^0} \approx 2,3 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c = {{4,5} \over {{\mathop{\rm s}\nolimits} {\rm{in7}}{{\rm{5}}^0}}}.\sin {75^0} = 4,5 \cr} \)

c)  Ta có \(\widehat B = {180^0} - {120^0} - {40^0} = {20^0}\)

Áp dụng định lí sin :

\(\eqalign{
& \,\,\,\,\,\,{a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}} = {{35} \over {{\mathop{\rm s}\nolimits} {\rm{in12}}{{\rm{0}}^0}}}\,\,\,\,\, \Rightarrow \,\,a = {{35} \over {{\mathop{\rm s}\nolimits} {\rm{in12}}{{\rm{0}}^0}}}.\sin {40^0} \approx 26 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b = {{35} \over {{\mathop{\rm s}\nolimits} {\rm{in12}}{{\rm{0}}^0}}}.\sin {20^0} \approx 13,8 \cr} \)

d)  Ta có \(\widehat A = {180^0} - {83^0} - {57^0} = {40^0}\)

Áp dụng định lí sin :

\(\eqalign{
& \,\,\,\,\,\,{a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}} = {{137,5} \over {{\mathop{\rm s}\nolimits} {\rm{in4}}{{\rm{0}}^0}}}\,\,\,\, \Rightarrow \,\,b = {{137,5} \over {{\mathop{\rm s}\nolimits} {\rm{in4}}{{\rm{0}}^0}}}.\sin {83^0} \approx 212,3 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c = {{137,5} \over {{\mathop{\rm s}\nolimits} {\rm{in4}}{{\rm{0}}^0}}}.\sin {57^0} \approx 179,4 \cr} \)

 


Bài 34 trang 66 SGK Hình học 10 nâng cao

Bài 34. Giải tam giác \(ABC\), biết

a) \(a = 6,3,\,\,b = 6,3,\,\,\widehat C = {54^0}\);                            

b) \(b = 32,\,c = 45,\,\widehat A = {87^0}\);

c) \(a = 7,\,\,b = 23,\,\,\widehat C = {130^0}\).

Giải

a) \(ABC\) là tam giác cân tại \(C\) \( \Rightarrow \,\,\widehat A = \widehat B = {{{{180}^0} - {{54}^0}} \over 2} = {63^0}\). Áp dụng định lí sin ta có

 \(\,\,\,\,\,\,{a \over {\sin A}} = {c \over {\sin C}} = {{6,3} \over {{\mathop{\rm s}\nolimits} {\rm{in6}}{{\rm{3}}^0}}}\,\, \Rightarrow \,\,c = {{6,3} \over {{\mathop{\rm s}\nolimits} {\rm{in6}}{{\rm{3}}^0}}}.\sin {54^0} \approx 5,7\)

b)  Áp dụng định lí cosin ta có

\(\eqalign{
& {a^2} = {b^2} + {c^2} - 2bc.\cos A \cr
& \,\,\,\,\,\, = {32^2} + {45^2} - 2.32.45.\cos {87^0} \approx 2898,27 \cr
& \Rightarrow a \approx 53,8 \cr} \)

Áp dụng định lí sin ta có

\(\eqalign{
& \,\,\,\,\,\,{a \over {\sin A}} = {b \over {\sin B}}\,\, \Rightarrow \,\,\sin B = {{b\sin A} \over a} = {{32.\sin {{87}^0}} \over {53,8}} \approx 0,6 \cr
& \Rightarrow \,\,\widehat B \approx {36^0}\,,\,\,\widehat C \approx {57^0} \cr} \)

c)  Áp dụng định lí cosin ta có

\(\eqalign{
& {c^2} = {a^2} + {b^2} - 2ab.\cos C \cr
& \,\,\,\,\,\, = {7^2} + {23^2} - 2.7.23.\cos {130^0} \approx 785 \cr
& \Rightarrow c \approx 28 \cr
& \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}} = {{{{23}^2} + {{28}^2} - {7^2}} \over {2.23.28}} \approx 0,98 \cr
& \Rightarrow \,\,\widehat A = {11^0}\,,\,\,\widehat B = {39^0} \cr} \)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác