Bài 1 trang 69 SGK Hình học 10 nâng cao
Bài 1. Chứng minh các công thức sau
a) \(\overrightarrow a .\,\overrightarrow b = {1 \over 2}\left( {|\overrightarrow a {|^2} + |\overrightarrow b {|^2} - \overrightarrow {|a} - \overrightarrow b {|^2}} \right)\);
b) \(\overrightarrow a .\,\overrightarrow b = {1 \over 4}\left( {|\overrightarrow a + \overrightarrow b {|^2} - |\overrightarrow a - \overrightarrow b {|^2}} \right)\).
Hướng dẫn trả lời
a) Ta có \(|\overrightarrow a - \overrightarrow b {|^2} = {(\overrightarrow a - \overrightarrow b )^2} = |\overrightarrow a {|^2} - 2\overrightarrow a \overrightarrow b + |\overrightarrow b {|^2}\)
\( \Rightarrow \,\,\,\overrightarrow a .\,\overrightarrow b = {1 \over 2}(|\overrightarrow a {|^2} + |\overrightarrow b {|^2} - |\overrightarrow a - \overrightarrow b {|^2})\)
b) Ta có \(|\overrightarrow a + \overrightarrow b {|^2} - |\overrightarrow a - \overrightarrow b {|^2} = {(\overrightarrow a + \overrightarrow b )^2} - {(\overrightarrow a - \overrightarrow b )^2}\)
\(\eqalign{
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = (\overrightarrow a + \overrightarrow b - \overrightarrow a + \overrightarrow b )(\overrightarrow a + \overrightarrow b + \overrightarrow a - \overrightarrow b ) = 4.\,\overrightarrow a .\,\overrightarrow b \cr
& \Rightarrow \,\,\overrightarrow a .\,\overrightarrow b = {1 \over 4}(|\overrightarrow a + \overrightarrow b {|^2} - |\overrightarrow a - \overrightarrow b {|^2}). \cr} \)
Bài 2 trang 69 SGK Hình học 10 nâng cao
Bài 2. Gọi \(G\) là trọng tâm tam giác \(ABC\).
a) Chứng minh rằng với mọi điểm \(M\), ta luôn có
\(M{A^2} + M{B^2} + M{C^2} = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\).
b) Tìm tập hợp các điểm \(M\) sao cho \(M{A^2} + M{B^2} + M{C^2} = {k^2}\), trong đó \(k\) là một số cho trước.
Hướng dẫn trả lời
Ta có
\(\eqalign{
& M{A^2} + M{B^2} + M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2} \cr
&= {(\overrightarrow {GA} - \overrightarrow {GM} )^2} + {(\overrightarrow {GB} - \overrightarrow {GM} )^2} + {(\overrightarrow {GC} - \overrightarrow {GM} )^2} \cr
& = {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2} + 3{\overrightarrow {MG} ^2} - 2\overrightarrow {GM} (\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} ) \cr
&= 3M{G^2} + G{A^2} + G{B^2} + G{C^2} \cr} \)
b) Áp dụng câu a), ta có
\(M{A^2} + M{B^2} + M{C^2} = {k^2}\,\, \Leftrightarrow \,\,3M{G^2} = {k^2} - (G{A^2} + G{B^2} + G{C^2})\)
+) Nếu \({k^2} > G{A^2} + G{B^2} + G{C^2}\) thì tập hợp các điểm \(M\) là đường tròn tâm \(G\) bán kính \(\sqrt {{1 \over 3}\left[ {{k^2} - (G{A^2} + G{B^2} + G{C^2})} \right]} \).
+) Nếu \({k^2} = G{A^2} + G{B^2} + G{C^2}\) thì tập hợp các điểm \(M\) chỉ gồm một phần tử là \(G\).
+) Nếu \({k^2} < G{A^2} + G{B^2} + G{C^2}\) thì tập hợp điểm \(M\) là tập rỗng.
Bài 3 trang 70 SGK Hình học 10 nâng cao
Bài 3. Cho hình bình hành \(ABCD\). Tìm tập hợp các điểm \(M\) sao cho
\(M{A^2} + M{B^2} + M{C^2} + M{D^2} = {k^2}\), trong đó \(k\) là một số cho trước.
Hướng dẫn trả lời
Gọi \(O\) là tâm hình bình hành \(ABCD\), ta có
\(\eqalign{
& M{A^2} + M{B^2} + M{C^2} + M{D^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2} + {\overrightarrow {MD} ^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {(\overrightarrow {OA} - \overrightarrow {OM} )^2} + {(\overrightarrow {OB} - \overrightarrow {OM} )^2} + {(\overrightarrow {OC} - \overrightarrow {OM} )^2} + {(\overrightarrow {OD} - \overrightarrow {OM} )^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = O{A^2} + O{B^2} + O{C^2} + O{D^2} + 4O{M^2} - 2\overrightarrow {OM} (\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} ) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2(O{A^2} + O{B^2}) + 4O{M^2} \cr} \)
Do đó \(M{A^2} + M{B^2} + M{C^2} + M{D^2} = {k^2}\,\, \Leftrightarrow \,\,\,4O{M^2} = {k^2} - 2(O{A^2} + O{B^2})\).
+) Nếu \({k^2} > 2(O{A^2} + O{B^2})\) thì tập hợp các điểm \(M\) là đường tròn tâm \(O\) bán kính \(\sqrt {{1 \over 4}\left[ {{k^2} - 2(O{A^2} + O{B^2})} \right]} \).
+) Nếu \({k^2} = 2(O{A^2} + O{B^2})\) thì tập hợp các điểm \(M\) chỉ gồm một phần tử là \(O\).
+) Nếu \({k^2} < 2(O{A^2} + O{B^2})\) thì tập hợp điểm \(M\) là tập rỗng.
Bài 4 trang 70 SGK Hình học 10 nâng cao
Trên hình 63 có vẽ hai tam giác vuông cân ABC và A'B'C' có chung đỉnh A. Gọi I và J lần lượt là trung điểm của hai đoạn thẳng BB' và CC'. Chứng minh rằng
a) \(AI \bot C{C'}\,,\,AJ \bot B{B'}\,\);
b) \(B{C'}\,\, \bot {B'}C\,\,\).
Giải
Ta có \(\overrightarrow {AI} = {1 \over 2}(\overrightarrow {AB} + \overrightarrow {A{B'}} )\,\,;\,\,\overrightarrow {AJ} = {1 \over 2}(\overrightarrow {AC} + \overrightarrow {A{C'}} )\)
\(\eqalign{
& \Rightarrow \,\,\overrightarrow {AI} .\,\overrightarrow {C{C'}} = {1 \over 2}(\overrightarrow {AB} + \overrightarrow {A{B'}} ).\,(\overrightarrow {A{C'}} - \overrightarrow {AC} ) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {1 \over 2}(\overrightarrow {AB} .\,\overrightarrow {A{C'}} - \overrightarrow {AB} .\overrightarrow {AC} + \overrightarrow {A{B'}} .\,\overrightarrow {A{C'}} - \overrightarrow {A{B'}} .\,\overrightarrow {AC} ) \cr} \)
Vì \(AB \bot AC\,,\,\,A{B'} \bot A{C'}\,\) nên \(\overrightarrow {AB} .\,\overrightarrow {AC} = \overrightarrow {A{B'}} .\,\overrightarrow {A{C'}} = 0\)
Mặt khác
\(\eqalign{
& \overrightarrow {AB} .\,\overrightarrow {A{C'}} = AB.\,A{C'}.\cos \widehat {BA{C'}} \cr
& \overrightarrow {A{B'}} .\,\overrightarrow {AC} = A{B'}.\,AC.\cos \widehat {{B'}AC} \cr
& \Rightarrow \,\,\,\overrightarrow {AB} .\,\overrightarrow {A{C'}} = \overrightarrow {A{B'}} .\,\overrightarrow {AC} \,\, \Rightarrow \,\,\overrightarrow {AI} .\,\overrightarrow {C{C'}} = 0\,\, \Rightarrow \,\,AI \bot C{C'} \cr} \)
Tương tự \(\overrightarrow {AJ} .\,\overrightarrow {B{B'}} = {1 \over 2}(\overrightarrow {AC} + \overrightarrow {A{C'}} ).\,(\overrightarrow {A{B'}} - \overrightarrow {AB} )\)
\(\eqalign{
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {1 \over 2}(\overrightarrow {AC} .\,\overrightarrow {A{B'}} - \overrightarrow {AC} .\overrightarrow {AB} + \overrightarrow {A{C'}} .\,\overrightarrow {A{B'}} - \overrightarrow {A{C'}} .\,\overrightarrow {AB} ) =0\cr
& \Rightarrow \,\,AJ \bot B{B'} \cr} \)
b) Ta có
\(\eqalign{
& \overrightarrow {B{C'}} .\,\overrightarrow {{B'}C} = (\overrightarrow {A{C'}} - \overrightarrow {AB} ).\,(\overrightarrow {AC} - \overrightarrow {A{B'}} ) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {A{C'}} .\,\overrightarrow {AC} - \overrightarrow {A{C'}} .\,\overrightarrow {A{B'}} - \overrightarrow {AB} .\,\overrightarrow {AC} + \overrightarrow {AB} .\,\overrightarrow {A{B'}} \cr} \)
\(\overrightarrow {AB} .\,\overrightarrow {A{B'}} = AB.A{B'}.\cos \widehat {BA{B'}}\)
\(\overrightarrow {AC} .\,\overrightarrow {A{C'}} = AC.A{C'}.\cos ({180^0} - \widehat {BA{B'}}) \)
\(= - \overrightarrow {AB} .\,\overrightarrow {A{B'}}.\)
Do đó: \(\overrightarrow {B{C'}} .\,\overrightarrow {{B'}C} =\overrightarrow 0\)
Vậy \(B{C'} \bot {B'}C\).
Giaibaitap.me
Giải bài tập trang 70 bài ôn tập chương II tích vô hướng của hai vecto và ứng dụng SGK Hình học 10 nâng cao. Câu 5: Cho hình vuông ABCD cạnh a. Gọi N là trung điểm của CD, M là điểm trên AC sao cho ...
Giải bài tập trang 70, 71 bài ôn tập chương II tích vô hướng của hai vecto và ứng dụng SGK Hình học 10 nâng cao. Câu 9: Tính diện tích S, chiều cao...
Giải bài tập trang 71 bài tập trắc nghiệm chương II SGK Hình học 10 nâng cao. Câu 1: Giá trị sau bằng bao nhiêu ?...
Giải bài tập trang 72 bài tập trắc nghiệm chương II SGK Hình học 10 nâng cao. Câu 5: Cho O là tâm đường tròn ngoại tiếp tam giác đều MNP. Góc nào sau đây bằng ...