Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 10

CHƯƠNG II: TÍCH VÔ HƯỚNG CỦA HAI VEC TƠ VÀ ỨNG DỤNG

Giải bài tập trang 91 bài 2 tích vô hướng của hai vecto Sách bài tập (SBT) Toán Hình học 10. Câu 2.13: Cho hai vec tơ..

Bài 2.13 trang 91 Sách bài tập (SBT) Toán Hình học 10

Cho hai vec tơ \(\overrightarrow a \) và \(\overrightarrow b \)  đều khác \(\overrightarrow 0 \). Tích vô hướng \(\overrightarrow a .\overrightarrow b \) khi nào dương, khi nào âm và  khi nào bằng 0?

Gợi ý làm bài

Tac có:

\(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos (\overrightarrow a ,\overrightarrow b )\)

Do đó:

\(\overrightarrow a .\overrightarrow b  > 0\) khi \(\cos (\overrightarrow a ,\overrightarrow b ) > 0\) nghĩa là \(0 \le (\overrightarrow a ,\overrightarrow b ) \le {90^0}\)

\(\overrightarrow a .\overrightarrow b  < 0\) khi \(\cos (\overrightarrow a ,\overrightarrow b ) < 0\) nghĩa là \({90^0} \le (\overrightarrow a ,\overrightarrow b ) \le {180^0}\)

\(\overrightarrow a .\overrightarrow b  = 0\) khi \(\cos (\overrightarrow a ,\overrightarrow b ) = 0\) nghĩa là \((\overrightarrow a ,\overrightarrow b ) = {90^0}\)

 


Bài 2.14 trang 91 Sách bài tập (SBT) Toán Hình học 10

Áp dụng tính chất giao hoán và tính chất phân phối của tích vô hướng hãy chứng minh các kết quả sau đây:

\({(\overrightarrow a  + \overrightarrow b )^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \)

\({(\overrightarrow a  - \overrightarrow b )^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} - 2\overrightarrow a .\overrightarrow b \)

\((\overrightarrow a  + \overrightarrow b )(\overrightarrow a  - \overrightarrow b ) = {\left| {\overrightarrow a } \right|^2} - {\left| {\overrightarrow b } \right|^2}\)

Gợi ý làm bài

\(\eqalign{
& {(\overrightarrow a + \overrightarrow b )^2} = (\overrightarrow a + \overrightarrow b ).(\overrightarrow a + \overrightarrow b ) \cr
& = \overrightarrow a .\overrightarrow a + \overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow a + \overrightarrow b .\overrightarrow b \cr} \)

\(= {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \)

Các tính chất còn lại được chứng minh tương tự.

 


Bài 2.15 trang 91 Sách bài tập (SBT) Toán Hình học 10

Tam giác ABC vuông tại A và có  AB = AC = a. Tính:

a) \(\overrightarrow {AB} .\overrightarrow {AC} \)

b) \(\overrightarrow {BA} .\overrightarrow {BC} \)

c) \(\overrightarrow {AB} .\overrightarrow {BC} \)

Gợi ý làm bài

(h2.20)

\(\overrightarrow {AB} .\overrightarrow {AC}  = 0\)

\(\overrightarrow {BA} .\overrightarrow {BC}  = a.a\sqrt 2 .\cos {45^0} = {a^2}\)

\(\overrightarrow {AB} .\overrightarrow {BC}  = a.a\sqrt 2 .\cos {135^0} =  - {a^2}\)

 


Bài 2.16 trang 91 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác ABC có AB = 5 cm, BC = 7 cm, CA = 8 cm.

a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \) rồi suy ra giá trị của góc A;

b) Tính \(\overrightarrow {CA} .\overrightarrow {CB} \)

Gợi ý làm bài

a) Ta có:

\(B{C^2} = {\overrightarrow {BC} ^2} = {(\overrightarrow {AC}  - \overrightarrow {AB} )^2}\)

\({\overrightarrow { = AC} ^2} + {\overrightarrow {AB} ^2} - 2\overrightarrow {AC} .\overrightarrow {AB} \)

Do đó:

\(\eqalign{
& \overrightarrow {AB} .\overrightarrow {AC} = {{{{\overrightarrow {AC} }^2} + {{\overrightarrow {AB} }^2} - {{\overrightarrow {BC} }^2}} \over 2} \cr
& = {{{8^2} + {5^2} - {7^2}} \over 2} = 20 \cr} \)

Mặt khác:

\(\eqalign{
& \overrightarrow {AB} .\overrightarrow {AC} = AB.AC.cosA \cr
& = 5.8.cosA = 20 \cr} \)

Suy ra \(\cos A = {{20} \over {40}} = {1 \over 2} =  > \widehat A = {60^0}\)

b) Ta có:

\(\eqalign{
& B{A^2} = {\overrightarrow {BA} ^2} = {(\overrightarrow {CA} - \overrightarrow {CB} )^2} \cr
& = {\overrightarrow {CA} ^2} + {\overrightarrow {CB} ^2} - 2\overrightarrow {CA} .\overrightarrow {CB} \cr} \)

Do đó:

\(\eqalign{
& \overrightarrow {CA} .\overrightarrow {CB} = {1 \over 2}({\overrightarrow {CA} ^2} + {\overrightarrow {CB} ^2} - {\overrightarrow {BA} ^2}) \cr
& = {1 \over 2}({8^2} + {7^2} - {5^2}) = 44 \cr} \)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác