Bài 18 trang 200 SGK Đại số 10 Nâng cao
Tính giá trị lượng giác của góc α trong mỗi trường hợp sau:
a) \(\cos \alpha = {1 \over 4};\,\,\sin \alpha < 0\)
b) \(\sin = - {1 \over 3};\,{\pi \over 2} < \alpha < {{3\pi } \over 2}\)
c) \(\tan \alpha = {1 \over 2};\, - \pi < \alpha < 0\)
Đáp án
a) Ta có:
\(\eqalign{
& \sin \alpha = - \sqrt {1 - {{\cos }^2}\alpha } = - \sqrt {1 - {1 \over {16}}} = - {{\sqrt {15} } \over 4} \cr
& \tan \alpha = {{\sin \alpha } \over {\cos \alpha }} = - \sqrt {15} \cr
& \cot \alpha = {1 \over {\tan \alpha }} = - {{\sqrt {15} } \over 5} \cr} \)
b) Ta có:
\(\eqalign{
& \,{\pi \over 2} < \alpha < {{3\pi } \over 2} \Rightarrow \cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - {{2\sqrt 2 } \over 3} \cr
& \tan \alpha = {{\sin \alpha } \over {\cos \alpha }} = {1 \over {2\sqrt 2 }} = {{\sqrt 2 } \over 4} \cr
& \cot \alpha = 2\sqrt 2 \cr} \)
c) Ta có:
\(\eqalign{
& \left\{ \matrix{
- \pi < \alpha < 0 \hfill \cr
\tan \alpha = {1 \over 2} \hfill \cr} \right. \Rightarrow \cos \alpha < 0\cr& \Rightarrow \cos \alpha = - {1 \over {\sqrt {1 + {{\tan }^2}\alpha } }} = - {{2\sqrt 5 } \over 5} \cr
& \sin \alpha = \tan \alpha .\cot \alpha = - {{\sqrt 5 } \over 5} \cr
& \cot \alpha = {1 \over {\tan \alpha }} = 2 \cr} \)
Bài 19 trang 200 SGK Đại số 10 Nâng cao
Đơn giản các biểu thức
a) \(\sqrt {{{\sin }^4}\alpha + {{\sin }^2}\alpha {{\cos }^2}\alpha } \)
b) \({{1 - \cos \alpha } \over {{{\sin }^2}\alpha }} - {1 \over {1 + \cos \alpha }}\,\,(\sin \alpha \ne 0)\)
c) \({{1 - {{\sin }^2}\alpha {{\cos }^2}\alpha } \over {{{\cos }^2}\alpha }} - {\cos ^2}\alpha \,\,\,(cos\alpha \ne 0)\)
Đáp án
a) Ta có:
\(\eqalign{
& \sqrt {{{\sin }^4}\alpha + {{\sin }^2}\alpha {{\cos }^2}\alpha } = \sqrt {{{\sin }^2}\alpha ({{\sin }^2}\alpha + {{\cos }^2}\alpha )} \cr
& = \sqrt {{{\sin }^2}\alpha } = |\sin \alpha | \cr} \)
b) Ta có:
\(\eqalign{
& {{1 - \cos \alpha } \over {{{\sin }^2}\alpha }} - {1 \over {1 + \cos \alpha }}= {{1 - \cos \alpha } \over {1 - {{\cos }^2}\alpha }} - {1 \over {1 + \cos \alpha }} \cr
& = {1 \over {1 + \cos \alpha }} - {1 \over {1 + \cos \alpha }} = 0 \cr} \)
c) Ta có:
\(\eqalign{
& {{1 - {{\sin }^2}\alpha{{\cos }^2}\alpha} \over {{{\cos }^2}\alpha}} - {\cos ^2}\alpha\cr&= {1 \over {{{\cos }^2}\alpha }} - {\sin ^2}\alpha - {\cos ^2}\alpha \cr
& = {1 \over {{{\cos }^2}\alpha }} - 1 = {\tan ^\alpha } \cr} \)
Bài 20 trang 200 SGK Đại số 10 Nâng cao
Tính các giá trị lượng giác của các góc sau
2250; -2250; 7500; -5100
\({{5\pi } \over 3};\,\,{{11\pi } \over 6};\,\,{{ - 10\pi } \over 3};\,\,\, - {{17\pi } \over 3}\)
Đáp án
+
\(\eqalign{
& \sin {225^0} = \sin ( - {135^0} + {360^0})\cr& = \sin ( - {135^0}) = - {{\sqrt 2 } \over 2} \cr
& \cos {225^0} = \cos ( - {135^0} + {360^0}) \cr&= \cos ( - {135^0}) = - {{\sqrt 2 } \over 2} \cr
& \tan ( - {225^0}) = \cot {225^0} = 1 \cr} \)
+
\(\eqalign{
& \sin ( - {225^0}) = \sin ({135^0} - {360^0}) = \sin {135^0} = {{\sqrt 2 } \over 2} \cr
& cos( - {225^0}) = \cos ({135^0} - {360^0}) = \cos {135^0} = -{{\sqrt 2 } \over 2} \cr
& \tan ( - {225^0}) = - 1 = \cot ( - 225) \cr} \)
+
\(\eqalign{
& \sin {750^0} = \sin ({30^0} + {720^0}) = \sin {30^0} = {1 \over 2} \cr
& \cos {750^0} = \cos {30^0} = {{\sqrt 3 } \over 2} \cr
& \tan {750^0} = \tan {30^0} = {{\sqrt 3 } \over 2} \cr
& \cot {750^0} = \cot {30^0} = \sqrt 3 \cr} \)
+
\(\eqalign{
& \sin ( - {510^0}) = \sin ( - {150^0} - {360^0})\cr& = \sin ( - {150^0}) = - {1 \over 2} \cr
& \cos ( - {510^0}) = \cos ( - {150^0}) = - {{\sqrt 3 } \over 2} \cr
& \tan ( - {510^0}) = {1 \over {\sqrt 3 }} \cr
& \cot ( - {510^0}) = \sqrt 3 \cr} \)
+
\(\eqalign{
& \sin {{5\pi } \over 3} = \sin ( - {\pi \over 3} + 2\pi ) = \sin ( - {\pi \over 3}) = - {{\sqrt 3 } \over 2} \cr
& \cos {{5\pi } \over 3} = \cos ( - {\pi \over 3}) = {1 \over 2} \cr
& \tan ({{5\pi } \over 3}) = - \sqrt 3 \cr
& \cot {{5\pi } \over 3} = - {1 \over {\sqrt 3 }} \cr} \)
+
\(\eqalign{
& \sin {{11\pi } \over 6} = \sin ( - {\pi \over 6} + 2\pi ) = \sin ( - {\pi \over 6}) = - {1 \over 2} \cr
& \cos {{11\pi } \over 6} = {{\sqrt 3 } \over 2} \cr
& \tan {{11\pi } \over 6} = - {1 \over {\sqrt 3 }} \cr
& \cot {{11\pi } \over 6} = - \sqrt 3 \cr} \)
+
\(\eqalign{
& \sin ( - {{10\pi } \over 3}) = \sin ({{2\pi } \over 3} - 4\pi ) = \sin {{2\pi } \over 3} = {{\sqrt 3 } \over 2} \cr
& \cos ( - {{10\pi } \over 3}) = \cos {{2\pi } \over 3} = - {1 \over 2} \cr
& \tan ( - {{10\pi } \over 3}) = - \sqrt 3 \cr
& \cot ( - {{10\pi } \over 3}) = - {1 \over {\sqrt 3 }} \cr} \)
+
\(\eqalign{
& \sin ( - {{17\pi } \over 3}) = \sin ({\pi \over 3} - 6\pi ) = \sin {\pi \over 3} = {{\sqrt 3 } \over 2} \cr
& \cos ( - {{17\pi } \over 3}) = \cos {\pi \over 3} = {1 \over 2} \cr
& \tan ( - {{17\pi } \over 3}) = \sqrt 3 \cr
& \cot ( - {{17\pi } \over 3}) = {1 \over {\sqrt 3 }} \cr} \)
Giaibaitap.me
Giải bài tập trang 200, 201 bài 2 giá trị của góc (cung) lượng giác SGK Đại số 10 Nâng cao. Câu 21: Xét góc lượng giác (OA; OM) = α, trong đó M là điểm không nằm trên các trục tọa độ Ox, Oy...
Giải bài tập trang 205, 206 bài 3 giá trị lượng giác của các cung (góc) đặc biệt SGK Đại số 10 Nâng cao. Câu 24: Mỗi khẳng định sau đúng hay sai....
Giải bài tập trang 206 bài 3 giá trị lượng giác của các cung (góc) đặc biệt SGK Đại số 10 Nâng cao. Câu 28: Xét hệ tọa độ vuông góc Oxy gắn với đường tròn lượng giác kiểm nghiệm rằng ...
Giải bài tập trang 206 bài 3 giá trị lượng giác của các cung (góc) đặc biệt SGK Đại số 10 Nâng cao. Câu 31: Xác định dấu của các giá trị lượng giác sau...