Bài 16 trang 193 Sách bài tập (SBT) Toán Đại số 10
Cho \(\cos \alpha = {1 \over 3}\) tính \(sin(\alpha + {\pi \over 6}) - \cos (\alpha - {{2\pi } \over 3})\)
Gợi ý làm bài
Ta có:
\(sin(\alpha + {\pi \over 6}) - \cos (\alpha - {{2\pi } \over 3})\)
= \(sin\alpha c{\rm{os}}{\pi \over 6} + \cos \alpha \sin {\pi \over 6} - \cos \alpha \cos {{2\pi } \over 3} - \sin \alpha \sin {{2\pi } \over 3}\)
\( = {{\sqrt 3 } \over 2}sin\alpha + {1 \over 2}\cos \alpha + {1 \over 2}\cos \alpha - {{\sqrt 3 } \over 2}\sin \alpha \)
\( = \cos \alpha = {1 \over 3}\)
Bài 17 trang 193 Sách bài tập (SBT) Toán Đại số 10
Cho \(\sin \alpha = {8 \over {17}},\sin \beta = {{15} \over {17}}\) với \(0 < \alpha < {\pi \over 3},0 < \beta < {\pi \over 2}\). Chứng minh rằng \(\alpha + \beta = {\pi \over 2}\)
Gợi ý làm bài
Ta có:
\(\eqalign{
& \cos \alpha = \sqrt {1 - {{64} \over {289}}} = \sqrt {{{225} \over {289}}} = {{15} \over {17}}; \cr
& \cos \beta = \sqrt {1 - {{225} \over {289}}} = \sqrt {{{64} \over {289}}} = {8 \over {17}} \cr} \)
Do đó:
\(\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \)
\({8 \over {17}}.{8 \over {17}} + {{15} \over {17}}.{{15} \over {17}} = {{289} \over {289}} = 1\)
Vì \(0 < \alpha < {\pi \over 3},0 < \beta < {\pi \over 2}\) nên từ đó suy ra \(\alpha + \beta = {\pi \over 2}\)
Bài 18 trang 193 Sách bài tập (SBT) Toán Đại số 10
Không dùng bảng số và máy tính, chứng minh rằng
a) \(\sin {20^0} + 2\sin {40^0} - \sin {100^0} = \sin {40^0}\)
b) \({{\sin ({{45}^0} + \alpha ) - c{\rm{os(}}{{45}^0} + \alpha )} \over {\sin ({{45}^0} + \alpha ) + c{\rm{os(}}{{45}^0} + \alpha )}} = \tan \alpha \)
c) \({{3{{\cot }^2}{{15}^0} - 1} \over {3 - c{\rm{o}}{{\rm{t}}^2}{{15}^0}}} = - \cot {15^0}\)
d) \(\sin {200^0}\sin {310^0} + c{\rm{os34}}{{\rm{0}}^0}{\rm{cos5}}{{\rm{0}}^0}{\rm{ = }}{{\sqrt 3 } \over 2}\)
Gợi ý làm bài
a)
\(\eqalign{
& \sin {20^0} + 2\sin {40^0} - \sin {100^0} \cr
& = (\sin {20^0} - \sin {100^0}) + 2\sin {40^0} \cr} \)
=\(2\cos {60^0}\sin ( - {40^0}) + 2\sin {40^0}\)
=\( - \sin {40^0} + 2\sin {40^0} = \sin {40^0}\)
b)
\(\eqalign{
& {{\sin ({{45}^0} + \alpha ) - c{\rm{os(}}{{45}^0} + \alpha )} \over {\sin ({{45}^0} + \alpha ) + c{\rm{os(}}{{45}^0} + \alpha )}} \cr
& = {{\sin ({{45}^0} + \alpha ) - \sin {\rm{(}}{{45}^0} - \alpha )} \over {\sin ({{45}^0} + \alpha ) + \sin {\rm{(}}{{45}^0} - \alpha )}} \cr} \)
=\({{2\cos {{45}^0}\sin \alpha } \over {2\sin {{45}^0}\cos \alpha }} = {{\sqrt 2 \sin \alpha } \over {\sqrt 2 \cos \alpha }} = \tan \alpha \)
c)
\({{3{{\cot }^2}{{15}^0} - 1} \over {3 - c{\rm{o}}{{\rm{t}}^2}{{15}^0}}} = {{{{\cot }^2}{{30}^0}{{\cot }^2}{{15}^0} - 1} \over {c{\rm{o}}{{\rm{t}}^2}{{30}^0} - {{\cot }^2}{{15}^0}}}\)
=\({{\cot {{30}^0}\cot {{15}^0} + 1} \over {c{\rm{ot}}{{30}^0} - \cot {{15}^0}}}.{{\cot {{30}^0}\cot {{15}^0} - 1} \over {c{\rm{ot}}{{30}^0} + \cot {{15}^0}}}\)
Mặt khác ta có
\(\cot (\alpha + \beta ) = {{\cos (\alpha + \beta )} \over {\sin (\alpha + \beta )}} = {{\cos \alpha \cos \beta - \sin \alpha \sin \beta } \over {\sin \alpha \cos \beta + \cos \alpha \sin \beta }}\)
Chia cả tử và mẫu của biểu thức cho \(\sin \alpha \sin \beta \) ta được
\(\cot (\alpha + \beta ) = {{\cot \alpha \cot \beta - 1} \over {\cot \alpha + \cot \beta }}\)
Tương tự
\(\cot (\alpha - \beta ) = {{\cot \alpha \cot \beta + 1} \over {\cot \beta - \cot \alpha }}\)
Do đó
\(A = \cot ({15^0} - {30^0})\cot ({15^0} + {30^0}) = - \cot {15^0}\)
d)
\(\sin {200^0}\sin {310^0} + c{\rm{os34}}{{\rm{0}}^0}{\rm{cos5}}{{\rm{0}}^0}\)
= \(\sin ({180^0} + {20^0})\sin ({360^0} - {50^0}) + c{\rm{os(36}}{{\rm{0}}^0}{\rm{ - 2}}{{\rm{0}}^0}{\rm{)cos5}}{{\rm{0}}^0}\)
\( = ( - \sin {20^0})( - \sin {50^0}) + \cos {20^0}\cos {50^0}\)
\( = \cos {50^0}\cos {20^0} + \sin {50^0}\sin {20^0}\)
= \(\cos ({50^0} - {20^0}) = {{\sqrt 3 } \over 2}\)
Giaibaitap.me
Giải bài tập trang 194 bài 3 công thức lượng giác Sách bài tập (SBT) Toán Đại số 10. Câu 19: Chứng minh rằng các biểu thức sau là những hằng số không phụ thuộc...
Giải bài tập trang 195 bài ôn tập chương VI Sách bài tập (SBT) Toán Đại số 10. Câu 23: Trong các đẳng thức sau, đẳng thức nào đúng, đẳng thức nào sai?...
Giải bài tập trang 195, 196 bài ôn tập chương VI Sách bài tập (SBT) Toán Đại số 10. Câu 27: Hãy xác định dấu của các tích (không dùng bảng số và máy tính)...
Giải bài tập trang 196 bài ôn tập chương VI Sách bài tập (SBT) Toán Đại số 10. Câu 31: Rút gọn các biểu thức (không dùng bảng số và máy tính)...