Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.5 trên 4 phiếu

Giải sách bài tập Toán 10

CHƯƠNG I: VEC TƠ

Giải bài tập trang 23 bài 2 tổng và hiệu của hai vecto Sách bài tập (SBT) Toán Hình học 10. Câu 1.16: Cho ngũ giác ABCDE. Chứng minh...

Bài 1.16 trang 23 Sách bài tập (SBT) Toán Hình học 10

Cho ngũ giác ABCDE. Chứng minh \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  = \overrightarrow {AE}  - \overrightarrow {DE} \)

Gợi ý làm bài

\(\eqalign{
& \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AE} - \overrightarrow {DE} \cr
& \Leftrightarrow \overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AE} + \overrightarrow {ED} \cr
& \Leftrightarrow \overrightarrow {AD} = \overrightarrow {AD} \cr} \)

 


Bài 1.17 trang 23 Sách bài tập (SBT) Toán Hình học 10

Cho ba điểm O, A, B không thẳng hàng. Với điều kiện nào thì vec tơ \(\overrightarrow {OA}  + \overrightarrow {OB} \) nằm trên đường phân giác của góc \(\widehat {AOB}\)?

Gợi ý làm bài

\(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OC} \) trong đó OACB là hình bình hành. OC là phân giác góc \(\widehat {AOB}\) khi và chỉ khi OACB là hình thoi, tức là OA = OB.

 

Bài 1.18 trang 23 Sách bài tập (SBT) Toán Hình học 10

Cho hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) có điểm đặt O và tạo với nhau góc \({60^0}\). Tìm cường độ tổng hợp lực của hai lực ấy biết rằng cường độ của hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) đều là 100N.

Gợi ý làm bài

(h.1.43)

\(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow F  = \overrightarrow {OA} \)

\(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = OA = 100\sqrt 3 \)

Vậy cường độ của hợp lực là \(100\sqrt 3 N\)

 


Bài 1.19 trang 23 Sách bài tập (SBT) Toán Hình học 10

Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC. Qua O kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt AB và DC lần lượt tại M và N, cắt AD và BC lần lượt tại E và F. Chứng minh rằng:

a) \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow {OB}  - \overrightarrow {OD} \)

b) \(\overrightarrow {BD}  = \overrightarrow {ME}  + \overrightarrow {FN} \)

Gợi ý làm bài

(Xem h.1.44)

a) \(\overrightarrow {AB}  = \overrightarrow {OB}  - \overrightarrow {OA} \)

\(\overrightarrow {DC}  = \overrightarrow {OC}  - \overrightarrow {OD} \)

Vì \(\overrightarrow {AB}  = \overrightarrow {DC} \) nên ta có \(\overrightarrow {OB}  - \overrightarrow {OA}  = \overrightarrow {OC}  - \overrightarrow {OD} \)

Vậy \(\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow {OA}  + \overrightarrow {OC} \)

b) Tứ giác AMOE là hình bình hành nên ta có \(\overrightarrow {ME}  = \overrightarrow {MA}  + \overrightarrow {MO} (1)\)

Tứ giác OFCN là hình bình hành nên ta có \(\overrightarrow {FN}  = \overrightarrow {FO}  + \overrightarrow {FC} (2)\)

Từ (1) và (2) suy ra:

\(\overrightarrow {ME}  + \overrightarrow {EN}  = \overrightarrow {MA}  + \overrightarrow {MO}  + \overrightarrow {FO}  + \overrightarrow {FC}\)

\( = (\overrightarrow {MA}  + \overrightarrow {FO} ) + (\overrightarrow {MO}  + \overrightarrow {FC} ) = \overrightarrow {BA}  + \overrightarrow {BC}  = \overrightarrow {BD} \)

(Vì \(\overrightarrow {FO}  = \overrightarrow {BM} ,\overrightarrow {MO}  = \overrightarrow {BF} \))

Vậy \(\overrightarrow {BD}  = \overrightarrow {ME}  + \overrightarrow {FN} \)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác