Câu 31 trang 161 Sách bài tập (SBT) Toán 9 Tập 1
Cho đường tròn (O), các bán kính OA và OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM = BN. Gọi C là giao điểm của các đường thẳng AM và BN. Chứng minh rằng:
a) OC là tia phân giác của góc AOB.
b) OC vuông góc với AB.
Giải:
a) Kẻ OH ⊥ AM, OK ⊥ BN
Ta có: AM = BN (gt)
Suy ra: OH = OK (hai dây bằng nhau cách đều tâm)
Xét hai tam giác OCH và OCK, ta có:
^OHC=^OKC=90∘
OC chung
OH = OK (chứng minh trên)
Suy ra: ∆OCH = ∆OCK (cạnh huyền, cạnh góc vuông)
^O1=^O2
Xét hai tam giác OAH và OBK, ta có:
^OHA=^OKB=90∘
OA = OB
OH = OK ( chứng minh trên)
Suy ra: ∆OAH = ∆OBK (cạnh huyền, cạnh góc vuông)
^O3=^O4
Suy ra: ^O1+^O3=^O2+^O4 hay ^AOC=^BOC
Vậy OC là tia phân giác của ^AOB
b) Tam giác OAB cân tại O có OC là tia phân giác nên OC đồng thời cũng là đường cao ( tính chất tam giác cân).
Suy ra: OC ⊥ AB.
Câu 32* trang 161 Sách bài tập (SBT) Toán 9 Tập 1
Cho đường tròn tâm O bán kính 5dm, điểm M cách O là 3dm.
a) Tính độ dài dây ngắn nhất đi qua điểm M.
b) Tính độ dài dây dài nhất đi qua M.
Giải:
a) Dây đi qua M ngắn dây là dây AB vuông góc với OM.
Áp dụng định lí Pi-ta-go vào tam giác vuông OAM ta có:
OA2=AM2+OM2
Suy ra: AM2=OA2−OM2=52−32=16
AM = 4 (dm)
Ta có: OM ⊥ AB
Suy ra: AM = 12AB
Hay: AB = 2AM = 2.4 = 8 (dm)
b) Dây đi qua M lớn nhất khi nó là đường kính của đường tròn (O). Vậy dây có độ dài bằng 2R = 2.5 = 10 (dm)
Câu 33* trang 161 Sách bài tập (SBT) Toán 9 Tập 1
Cho đường tròn (O), hai dây AB và CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB >CD, chứng minh rằng MH > MK.
Giải:
Ta có: HA = HB (gt)
Suy ra: OH ⊥ AB (đường kính dây cung)
Lại có: KC = KD (gt)
Suy ra: OK ⊥ CD ( đường kính dây cung)
Mà AB > CD (gt)
Nên OK > OH ( dây lớn hơn gần tâm hơn)
Áp dụng định lí Pi-ta-go vào tam giác vuông OHM ta có:
OM2=OH2+HM2
Suy ra: HM2=OM2−OH2 (1)
Áp dụng định lí Pi-ta-go vào tam giác vuông OKM, ta có:
OM2=OK2+KM2
Suy ra: KM2=OM2−OK2 (2)
Mà OH < OK (cmt) (3)
Từ (1), (2) và (3) suy ra: HM2>KM2 hay HM > KM.
Giaibaitap.me
Giải bài tập trang 161 bài 3 Liên hệ giữa dây và khoảng cách từ tâm đến dây Sách bài tập (SBT) Toán 9 tập 2. Câu 31: Cho đường tròn (O), các bán kính OA và OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM = BN...
Giải bài tập trang 161 bài 3 Liên hệ giữa dây và khoảng cách từ tâm đến dây Sách bài tập (SBT) Toán 9 tập 2. Câu 34: Cho đường tròn (O) và hai điểm A, B nằm bên trong đường tròn và không cùng thuộc một đường kính....
Giải bài tập trang 162 bài 4 Vị trí tương đối của đường thẳng và đường tròn Sách bài tập (SBT) Toán 9 tập 2. Câu 35: Nếu vẽ đường tròn tâm I bán kính bằng 2 thì đường tròn đó có vị trí tương đối như thế nào đối với các trục tọa độ...
Giải bài tập trang 162 bài 4 Vị trí tương đối của đường thẳng và đường tròn Sách bài tập (SBT) Toán 9 tập 2. Câu 38: Cho đường tròn (O) bán kính bằng 2cm. Một đường thẳng đi qua điểm A nằm bên ngoài đường tròn và cắt đường tròn tại B và C, trong đó AB = BC...