Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải SGK Toán 8 Kết Nối Tri Thức

CHƯƠNG 9. TAM GIÁC ĐỒNG DẠNG

Giải bài tập SGK Toán 8 Kết nối tri thức tập 2 trang 92 - Luyện tập chung. Cho hình thang ABCD (AB // CD) và các điểm M, N lần lượt trên cạnh AD và BC sao cho 2AM=MD, 2BN=NC. Biết AB=5cm,CD=6cm. Hãy tính độ dài đoạn thẳng MN

Bài 9.11 trang 92 SGK Toán 8 Kết nối tri thức tập 2

Cho ΔABC ∽ ΔDEF. Biết \(\widehat A = {60^o};\widehat E = {80^o}\), hãy tính số đo các góc \(\widehat B,\widehat C,\widehat D,\widehat F\)

Lời giải:

Vì  ΔABC ∽ ΔDEF \( \Rightarrow \widehat A = \widehat D{,^{}}\widehat B = \widehat E{,^{}}\widehat C = \widehat F\)

Mà \(\widehat A = {60^o} \Rightarrow \widehat D = {60^o}\)

\(\widehat E = {80^o} \Rightarrow \widehat B = {80^o}\)

Có \(\widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat C = \widehat F = {180^o} - {60^o} - {80^o} = {40^o}\)

Bài 9.12 trang 92 SGK Toán 8 Kết nối tri thức tập 2

Cho ΔABC ∽ ΔA'B'C'. Biết AB=3cmAB′=6cm và tam giác ABC có chu vi bằng 10 cm. Hãy tính chu vi tam giác A'B'C' 

Lời giải:

Suy ra A'B' + A'C' + B'C' = 2(AB + AC + BC) = 2 . 10 = 20 (cm).

Vậy chu vi tam giác A'B'C' là 20 cm.

Bài 9.13 trang 92 SGK Toán 8 Kết nối tri thức tập 2

Cho hình thang ABCD (AB // CD) có \(\widehat {DAB} = \widehat {DBC}\)

a) Chứng minh rằng ΔABD ∽ ΔBDC 

b) Giả sử AB=2cm,AD=3cm,BD=4cm. Tính độ dài các cạnh BC và DC

Lời giải:

a) Có AB // CD => \(\widehat {AB{\rm{D}}} = \widehat {B{\rm{D}}C}\)

- Xét  ΔABD và ΔBDC

Có \(\widehat {AB{\rm{D}}} = \widehat {B{\rm{D}}C}{,^{}}\widehat {DAB} = \widehat {DBC}\)

=> ΔABD ∽ ΔBDC (g.g)

b) Có \(\frac{{AB}}{{B{\rm{D}}}} = \frac{{12}}{{24}} = \frac{1}{2}\)

ΔABD ∽ ΔBDC với tỉ số \(\frac{1}{2}\)

=> \(\frac{3}{{BC}} = \frac{4}{{DC}} = \frac{1}{2}\)

=> BC=6 (cm)

     DC=8 (cm)

Bài 9.14 trang 92 SGK Toán 8 Kết nối tri thức tập 2

Cho các điểm A, B, C, D, E, F như Hình 9.29. Biết rằng DE // AB, EF // BC, DE=4cm, AB=6cm. Chứng minh rằng ΔAEF ∽ ΔECD và tính tỉ số đồng dạng

Lời giải:

Bài 9.15 trang 92 SGK Toán 8 Kết nối tri thức tập 2

Cho các điểm A, B, C, D, E như Hình 9.30. Biết rằng \(\widehat {BAC} = \widehat {C{\rm{D}}B}\). Chứng minh rằng ΔAED ∽ ΔBEC.

Lời giải:

Xét hai tam giác AEB và DEC có:

\(\widehat {BAC} = \widehat {C{\rm{D}}B}\)(giả thiết)

\(\widehat {AEB} = \widehat {DEC}\) (đối đỉnh)

Suy ra \(\Delta A{\rm{E}}B \backsim \Delta DEC\) (g.g) suy ra:

\(\frac{{A{\rm{E}}}}{{DE}} = \frac{{BE}}{{CE}} \Rightarrow \frac{{A{\rm{E}}}}{{BE}} = \frac{{DE}}{{CF}}\)

Xét hai tam giác AED và BEC có:

\(\widehat {A{\rm{ED}}} = \widehat {BEC}\) (đối đỉnh)

\(\frac{{A{\rm{E}}}}{{BE}} = \frac{{DE}}{{CF}}\)

Suy ra ΔAED ∽ ΔBEC (c.g.c)

Bài 9.16 trang 92 SGK Toán 8 Kết nối tri thức tập 2

Cho hình thang ABCD (AB // CD) và các điểm M, N lần lượt trên cạnh AD và BC sao cho 2AM=MD2BN=NC. Biết AB=5cm,CD=6cm. Hãy tính độ dài đoạn thẳng MN

Lời giải:

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác