A. Trắc nghiệm
Bài 9.37 trang 110 SGK Toán 8 Kết nối tri thức tập 2
Cho ABC là tam giác không cân. Biết ΔA′B′C′ ∽ ΔABC. Khẳng định nào sau đây là đúng?
A. ΔA′C′B′ ∽ ΔACB
B. ΔB′C′A′ ∽ ΔBAC
C. ΔB′A′C′ ∽ ΔBCA
D. ΔA′C′B′ ∽ ΔABC
Lời giải:
Vì ΔA′B′C′ ∽ ΔABC nên đỉnh A' tương ứng với đỉnh A, đỉnh B' tương ứng với đỉnh B, đỉnh C' tương ứng với đỉnh C. Vậy xét các đáp án ta thấy khẳng định A là khẳng định đúng do các cặp đỉnh tương ứng với nhau theo thứ tự trên.
Bài 9.38 trang 110 SGK Toán 8 Kết nối tri thức tập 2
Cho ΔA′B′C′ ∽ ΔABC với tỉ số đồng dạng bằng 2. Khẳng định nào sau đây là đúng:
A. \(\frac{{AB}}{{A'B'}} = 2\)
B. \(\frac{{AB}}{{A'C'}} = 2\)
C. \(\frac{{A'B'}}{{AB}} = 2\)
D. \(\frac{{A'B'}}{{AC}} = 2\)
Lời giải:
- Có ΔA′B′C′ ∽ ΔABC
=> \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = 2\)
=> Đáp án đúng là đáp án C
Bài 9.39 trang 110 SGK Toán 8 Kết nối tri thức tập 2
Trong các bộ ba số đo dưới đây, đâu là số đo ba cạnh của một tam giác vuông?
A. 3 m; 5 m; 6 m
B. 6 m; 8 m; 10 m
C. 1 cm; 0,5 cm; 1,25 cm
D. 9 m; 16 m; 25 m.
Lời giải:
Đáp án đúng là B
Xét đáp án B ta thấy 62 + 82 = 102 (= 100) nên bộ ba này tạo thành tam giác vuông.
(theo định lí Pythagore đảo).
Bài 9.40 trang 110 SGK Toán 8 Kết nối tri thức tập 2
Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D. Điều nào dưới đây không suy ra ΔABC ∽ ΔDEF
A. \(\widehat B = \widehat E\)
B. \(\widehat C = \widehat F\)
C. \(\widehat B + \widehat C = \widehat E + \widehat F\)
D. \(\widehat B - \widehat C = \widehat E - \widehat F\)
Lời giải:
Đáp án đúng là đáp án C. Vì \(\widehat B + \widehat C = \widehat E + \widehat F\) chưa thể suy ra được \( \widehat B = \widehat E\) và \( \widehat C = \widehat F \)
B. Tự luận
Bài 9.41 trang 110 SGK Toán 8 Kết nối tri thức tập 2
Cho hình 9.73, biết rằng MN // AB, MP // AC. Hãy liệt kê ba cặp hai tam giác (khác nhau) đồng dạng có trong hình
Lời giải:
+) ΔCNM ∽ ΔCAB (vì MN // AB) (1).
+) ΔMPB ∽ ΔCAB (vì MP // AC) (2).
+) Từ (1) và (2) ta suy ra được ΔCNM ∽ ΔMPB.
Bài 9.42 trang 110 SGK Toán 8 Kết nối tri thức tập 2
Cho hình 9.74, biết rằng \(\widehat {AB{\rm{D}}} = \widehat {AC{\rm{E}}}\). Chứng minh rằng ΔABD ∽ ΔACE và ΔBOE ∽ ΔCOD
Lời giải:
- Xét tam giác ABD và tam giác ACE có \(\widehat {AB{\rm{D}}} = \widehat {AC{\rm{E}}}\), góc A chung
=> ΔABD ∽ ΔACE (g.g)
- Vì ΔABD ∽ ΔACE
=> \(\widehat {A{\rm{D}}B} = \widehat {A{\rm{E}}C}\)
=> \(\widehat {C{\rm{D}}O} = \widehat {BEO}\) (1)
- Có \(\widehat {AB{\rm{D}}} = \widehat {AC{\rm{E}}}\)
Mà \(\widehat {AB{\rm{D}}} + \widehat {EBO} = {180^o}\)
\(\widehat {AC{\rm{E}}} + \widehat {DCO} = {180^o}\)
=> \(\widehat {EBO} = \widehat {DCO}\) (2)
Từ (1) và (2) => ΔBOE ∽ ΔCOD (g.g)
Bài 9.43 trang 110 SGK Toán 8 Kết nối tri thức tập 2
Hai đường trung tuyến BM, CN của tam giác ABC cắt nhau tại điểm G (H.9.75). Chứng minh rằng tam giác GMN đồng dạng với tam giác GBC và tìm tỉ số đồng dạng
Lời giải:
Vì BM, CN là các đường trung tuyến của tam giác ABC nên M, N lần lượt là trung điểm của AC, AB.
Suy ra MN là đường trung bình của tam giác ABC.
Do đó, MN // BC.
Do đó, ∆GMN ∽ ∆GBC (g.g).
Vì MN là đường trung bình của tam giác ABC nên BC = 2MN.
Bài 9.44 trang 111 SGK Toán 8 Kết nối tri thức tập 2
Cho tam giác ABC vuông tại A có AB=5cm, AC=4cm. Gọi AH, HD lần lượt là các đường cao kẻ từ đỉnh A của tam giác ABC và đỉnh H của tam giác HAB
a) Chứng minh rằng ΔHDA ∽ ΔAHC
b) Tính độ dài các đoạn thẳng HA, HB, HC, HD
Lời giải:
a) Có AB ⊥ AC, HD ⊥ AB
=> HD // AC
=> \(\widehat {DHA} = \widehat {HAC}\)
- Xét tam giác vuông HDA (vuông tại D) và tam giác vuông AHC (vuông tại H) có: \(\widehat {DHA} = \widehat {HAC}\)
=> ΔHDA ∽ ΔAHC
b) Xét tam giác ABC có: \(A{B^2} + A{C^2} = B{C^2}\)
mà AB=5cm, AC=4cm
=> \(BC = \sqrt {41} \)
- Có AH.BC=AB.AC
=> \(AH = \frac{{20\sqrt {41} }}{{41}}\)
=> \(H{B^2} = A{B^2} - A{H^2}\) (áp dụng định lý Pythagore trong tam giác vuông BHA)
=> \(HB = \frac{{25\sqrt {41} }}{{41}}\)
=> \(HC = \frac{{16\sqrt {41} }}{{41}}\)
- Xét tam giác vuông BDH và tam giác vuông BAC có: HD // AC
=> ΔBDH ∽ ΔBAC
=> \(\frac{{BH}}{{BC}} = \frac{{DH}}{{AC}}\)
=> \(H{\rm{D}} = \frac{{100}}{{41}}\)
Bài 9.45 trang 111 SGK Toán 8 Kết nối tri thức tập 2
Cho tam giác ABC có đường cao AH. Biết AH=12cm, CH=9cm, BH=16cm. Lấy M, N lần lượt là trung điểm của AH, BH
a) Chứng minh rằng ABC là tam giác vuông tại A
b) Chứng minh rằng MN ⊥ AC và CM ⊥ AN
c) Tính diện tích tam giác AMN
Lời giải:
a) Xét tam giác AHB vuông tại H, có:
AH2 + HB2 = AB2 (định lý Pythagore)
Suy ra AB2 = 122 + 162 = 400.
Suy ra AB = 20 cm.
Tương tự, có: AC2 = AH2 + CH2 (áp dụng định lý Pythagore trong tam giác vuông AHC).
Suy ra AC2 = 122 + 92 = 225.
Suy ra AC = 15 cm.
Có BC = CH + BH = 9 + 16 = 25 cm.
Trong tam giác ABC, nhận thấy AB2 + AC2 = BC2 (do 202 + 152 = 252 = 625).
Suy ra tam giác ABC vuông tại A (định lí Pythagore đảo).
b) Xét tam giác AHB có:
M là trung điểm của AH
N là trung điểm của BH
Suy ra MN là đường trung bình của tam giác AHB.
Do đó, MN // AB. Mà AB ⊥ AC (vì tam giác ABC vuông tại A).
Suy ra MN ⊥ AC.
Xét ΔACN có AH ⊥ CN (gt), MN ⊥ AC (cmt), AH ∩ MN = {M}.
Vậy M là trực tâm của ΔACN, do đó CM ⊥ AN
Bài 9.46 trang 111 SGK Toán 8 Kết nối tri thức tập 2
Cho tam giác ABC vuông tại A và các điểm D, E, F như Hình 9.77 sao cho AD là phân giác của góc BAC, DE và DF lần lượt vuông góc với AC và BC . Chứng minh rằng:
a) \(\frac{{B{\rm{D}}}}{{BC}} = \frac{{AB}}{{AB + AC}}\), từ đó suy ra \(A{\rm{E}} = \frac{{AB.AC}}{{AB + AC}}\)
b) ΔDFC ∽ ΔABC
c) DF=DB
Lời giải:
a) Vì AD là tia phân giác của góc BAC \( \Rightarrow \frac{{DB}}{{DC}} = \frac{{AB}}{{AC}} \Rightarrow DB.AC = DC.AB(*)\)
Ta có: \(B{\rm{D}}.\left( {AB + AC} \right) = B{\rm{D}}.AB + B{\rm{D}}.AC = DB.AB + DC.AB = AB.\left( {DB + DC} \right) = AB.BC\)
\(\begin{array}{l} \Rightarrow B{\rm{D}}.\left( {AB + AC} \right) = AB.BC\\ \Rightarrow \frac{{B{\rm{D}}}}{{BC}} = \frac{{AB}}{{AB + AC}}(1)\end{array}\)
\(\Delta CE{\rm{D}} \backsim \Delta CAB\left( {{{\widehat C}^{}}chung{;^{}}\widehat A = \widehat E} \right)\)
\(\begin{array}{l} \Rightarrow \frac{{CE}}{{CA}} = \frac{{C{\rm{D}}}}{{CB}}\\ \Rightarrow \frac{{AC - A{\rm{E}}}}{{AC}} = \frac{{BC - B{\rm{D}}}}{{BC}} \Rightarrow 1 - \frac{{A{\rm{E}}}}{{AC}} = 1 - \frac{{DB}}{{BC}}\\ \Rightarrow \frac{{A{\rm{E}}}}{{AC}} = \frac{{DB}}{{BC}}(2)\end{array}\)
Từ (1), (2) suy ra: \(\frac{{A{\rm{E}}}}{{AC}} = \frac{{AB}}{{AB + AC}} \Rightarrow A{\rm{E}} = \frac{{AB.AC}}{{AB + AC}}\)
b)
\(\begin{array}{l}\Delta DFC \backsim \Delta ABC\\ \Rightarrow \frac{{DF}}{{AB}} = \frac{{DC}}{{AC}} \Rightarrow DF = \frac{{AB.DC}}{{AC}}(3)\end{array}\)
Từ (*) ta có: \(DB = \frac{{DC.AB}}{{AC}}(4)\)
Từ (3), (4) suy ra: DF = DB
Bài 9.47 trang 111 SGK Toán 8 Kết nối tri thức tập 2
Để tính được chiều cao gần đúng của kim tự tháp Ai Cập, người ta nắm 1 cây cọc cao 1m vuông góc với mặt đất và đo được bóng cây cọc trên mặt đất là 1,5m. Khi đó chiều dài bóng của kim tự tháp trên mặt đất là 208,2 m. Hỏi kim tự tháp cao bao nhiêu mét?
Lời giải:
Giả sử AB là chiều cao của kim tự tháp với BC là bóng; A'B' là chiều cao cây cọc với bóng của nó trên mặt đất là B'C'.
Vì trong cùng một thời điểm, các tia nắng mặt trời tạo với mặt đất các góc bằng nhau.
Suy ra AB = 208,2 : 1,5 = 138,8 (m).
Vậy kim tự tháp cao 138,8 m.
Bài 9.48 trang 111 SGK Toán 8 Kết nối tri thức tập 2
Từ căn hộ chung cư nhà mình, bạn Lan đứng cách cửa sổ 1m nhìn sang tòa nhà đối diện thì vừa nhìn thấy đúng tất cả 6 tầng của tòa nhà đó. Biết rằng cửa sổ nhà Lan cao 80cm và mỗi tầng của tòa nhà đối diện 4m. Hỏi khoảng cách từ căn hộ nhà Lan đến tòa nhà đối diện là bao nhiêu?
Lời giải:
Ta có hình vẽ
Có OE = 1m; AB = 0,8m; CD = 6.4 = 24m
Xét tam giác OAB và tam giác OCD có: AB // CD
=> ΔOAB ∽ ΔOCD
\(\begin{array}{l} \Rightarrow \frac{{OE}}{{OF}} = \frac{{AB}}{{C{\rm{D}}}}\\ \Rightarrow \frac{1}{{OF}} = \frac{{0,8}}{{24}}\end{array}\)
=> OF=30(m)
=> EF=30−1=29m
Vậy khoảng cách từ căn hộ nhà Lan đến tòa nhà đối diện là 29m
Giaibaitap.me
Giải bài tập SGK Toán 8 Kết nối tri thức tập 2 trang 116 - Bài 38 Hình chóp tam giác đều. Vẽ và cắt một tam giác đều có cạnh 10 cm (H10.13) rồi gấp theo đường màu cam để được hình chóp tam giác đều (H.10.14)
Giải bài tập SGK Toán 8 Kết nối tri thức tập 2 trang 120 - Bài 39 Hình chóp tứ giác đều. Bánh ít có dạng hình chóp tứ giác đều, cạnh đáy 3 cm, cao 3 cm. Tính thể tích một chiếc bánh ít.
Giải bài tập SGK Toán 8 Kết nối tri thức tập 2 trang 121, 122 - Luyện tập chung. Tính thể tích của hình chóp tam giác đều S.ABC, biết diện tích đáy của nó bằng 15,6 cm2, chiều cao bằng 10 cm
Giải bài tập SGK Toán 8 Kết nối tri thức tập 2 trang 123, 124 - Bài tập cuối chương 10. Tính thể tích của hình chóp tứ giác đều, biết chiều cao bằng 9 cm và chu vi đáy bằng 12 cm.