Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải SGK Toán 8 Kết Nối Tri Thức

CHƯƠNG 9. TAM GIÁC ĐỒNG DẠNG

Giải bài tập SGK Toán 8 Kết nối tri thức tập 2 trang 82 - Bài 33 Hai tam giác đồng dạng. Cho tam giác ABC cân tại đỉnh A và tam giác MNP cân tại đỉnh M. Biết rằng \(\widehat {BAC} = \widehat {PMN}\), AB=2MN. Chứng minh ΔMNP ∽ ΔABC và tìm tỉ số đồng dạng

Bài 9.1 trang 82 SGK Toán 8 Kết nối tri thức tập 2

Cho ΔABC \(\backsim\) ΔMNP, khẳng định nào sau đây không đúng?

a) ΔMNP \(\backsim\) ΔABC

b) ΔBCA \(\backsim\) ΔNPM

c) ΔCAB \(\backsim\) ΔPNM

d) ΔACB \(\backsim\) ΔMNP

Lời giải:

Khẳng định d) là khẳng định không đúng 

=> ΔACB \(\backsim\) ΔMPN

Bài 9.2 trang 82 SGK Toán 8 Kết nối tri thức tập 2

Khẳng định nào sau đây là đúng?

a) Hai tam giác bằng nhau thì đồng dạng với nhau.

b) Hai tam giác bất kì đồng dạng với nhau

c) Hai tam giác đều bất kì đồng dạng với nhau

d) Hai tam giác vuông bất kì đồng dạng với nhau

e) Hai tam giác đồng dạng thì bằng nhau 

Lời giải:

+ Khẳng định a là khẳng định đúng vì các tam giác bằng nhau thì các góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau nên tỉ số giữa các cạnh tương ứng bằng nhau nên theo định nghĩa hai tam giác đồng dạng thì hai tam giác bằng nhau thì đồng dạng với nhau.

+ Khẳng định c là khẳng định đúng vì tam giác đều thì có các góc bằng 60° và các cạnh bằng nhau nên ta suy ra các góc tương ứng của hai tam giác đều bất kì bằng nhau và tỉ số các cạnh tương ứng của hai tam giác đều bất kì bằng nhau.

+ Khẳng định b sai vì hai tam giác gọi là đồng dạng với nhau nếu chúng có ba cặp góc bằng nhau từng đôi một và ba cặp cạnh tương ứng tỉ lệ.

+ Khẳng định d sai vì hai tam giác vuông mới chỉ thỏa mãn một điều kiện để xét đồng dạng, cần thêm tỉ lệ cạnh tương ứng hoặc 1 góc tương ứng bằng nhau.

+ Khẳng định e sai vì hai tam giác đồng dạng chỉ có kích thước tỉ lệ với nhau, còn hai tam giác bằng nhau là có các góc, các cạnh tương ứng bằng nhau.

Bài 9.3 trang 82 SGK Toán 8 Kết nối tri thức tập 2

Trong hình 9.9, ABC là tam giác không cân; M, N, P lần lượt là trung điểm của BC, CA, AB. Hãy tìm trong hình năm tam giác khác nhau mà chúng đôi một đồng dạng với nhau. Giải thích vì sao chúng đồng dạng 

 

Lời giải:

- Có AP = BP, NA = NC

=> NP // BC (P ∈ AB, N ∈ AC)

=> ΔABC \(\backsim\) ΔAPN 

- Có AP = BP, MB = MC

=> MP // AC (P ∈ AB, M ∈ BC)

=> ΔABC \(\backsim\) ΔPBM
- Có NA = NC, MB = MC

=> MN // AB (N ∈ AC,M ∈ BC)

=> ΔABC \(\backsim\) ΔNMC

- Có ΔABC \(\backsim\) ΔAPN và ΔABC \(\backsim\) ΔPBM => ΔAPN \(\backsim\) ΔPBM

- Có ΔABC \(\backsim\) ΔNMC và ΔABC \(\backsim\) ΔPBM => ΔNMC \(\backsim\) ΔPBM 

Bài 9.4 trang 82 SGK Toán 8 Kết nối tri thức tập 2

Cho tam giác ABC cân tại đỉnh A và tam giác MNP cân tại đỉnh M. Biết rằng  \(\widehat {BAC} = \widehat {PMN}\), AB=2MN. Chứng minh  ΔMNP ∽ ΔABC và tìm tỉ số đồng dạng 

Lời giải:

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác