Bài 2.22 trang 44 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Phân tích các đa thức sau thành nhân tử:
\(\begin{array}{l}a)\,{x^2} + xy;\\b)\,6{a^2}b - 18ab;\\c)\,{x^3} - 4x;\\d)\,{x^4} - 8x.\end{array}\)
Phương pháp:
Sử dụng phương pháp đặt nhân tử chung và sử dụng hằng đẳng thức.
Lời giải:
\(\begin{array}{l}a)\,{x^2} + xy = x.x + x.y = x\left( {x + y} \right); \\b)\,6{a^2}b - 18ab = 6ab\left( {a - 3} \right); \\c)\,{x^3} - 4x = x\left( {{x^2} - 4} \right) = x\left( {x - 2} \right)\left( {x + 2} \right); \\d)\,{x^4} - 8x = x\left( {{x^3} - 8} \right) = x\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right).\end{array}\)
Bài 2.23 trang 44 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Phân tích các đa thức sau thành nhân tử:
a) \({x^2} - 9 + xy + 3y\)
b) \({x^2}y + {x^2} + xy - 1\)
Phương pháp:
Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử, sử dụng hằng đẳng thức.
Lời giải:
a) x2 – 9 + xy + 3y = (x2 – 9) + (xy + 3y)
= (x + 3)(x – 3) + y(x + 3)
= (x + 3)(x + y – 3).
b) x2y + x2 + xy – 1 = (x2y + xy) + (x2 – 1)
= xy(x + 1) + (x + 1)(x – 1) = (x + 1)(xy + x – 1).
Bài 2.24 trang 44 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Tìm x biết:
a) \({x^2} - 4x = 0\)
b) \(2{x^3} - 2x = 0\)
Phương pháp:
Phân tích đa thức thành nhân tử.
\(A.B = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{A = 0}\\{B = 0}\end{array}} \right.\)
Lời giải:
a)
\(\begin{array}{l}{x^2} - 4x = 0\\ \Leftrightarrow x\left( {x - 4} \right) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x - 4 = 0}\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 4}\end{array}} \right.\end{array}\)
Vậy \(x \in \left\{ {0;4} \right\}\)
b)
\(\begin{array}{l}2{x^3} - 2x = 0\\ \Leftrightarrow 2x\left( {{x^2} - 1} \right) = 0\\ \Leftrightarrow 2x\left( {x - 1} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x - 1 = 0\\x + 1 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 1\end{array} \right.\end{array}\)
Vậy \(x \in \left\{ {0;1; - 1} \right\}\)
Bài 2.25 trang 44 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Một mảnh vườn hình vuông có độ dài cạnh bằng x (mét). Người ta làm đường đi xung quanh mảnh vườn, có độ rộng như nhau và bằng y (mét) (H.2.2)
a) Viết biểu thức tính diện tích S của đường bao quanh mảnh vườn theo x và y.
b) Phân tích S thành nhân tử rồi tính A khi x=102 m, y=2 m.
Phương pháp:
Viết biểu thức.
Diện tích đường bao quanh = diện tích mảnh vườn hình vuông – diện tích bên trong vườn.
Phân tích đa thức thành nhân tử.
Lời giải:
a) Đặt tên các điểm A, B, C, D, M, N, P, Q như hình vẽ.
Diện tích hình vuông ABCD là: x2 (m).
Hình vuông MNPQ có độ dài một cạnh là: x – y – y = x – 2y (m).
Diện tích hình vuông MNPQ là: (x – 2y)2 (m2).
Diện tích S của đường bao quanh mảnh vườn là:
S = x2 – (x – 2y)2 = x2 – (x2 – 4xy + 4y2)
= x2 – x2 + 4xy – 4y2 = 4xy – 4y2 (m2).
Vậy diện tích S của đường bao quanh mảnh vườn là 4xy – 4y2 (m2).
b) Phân tích đa thức S thành nhân tử, ta được:
S = 4xy – 4y2 = 4y(x – y).
Thay x = 102 m, y = 2 m vào biểu thức S, ta được:
S = 4 . 2 . (102 – 2) = 8 . 100 = 800 (m2).
Giaibaitap.me
Giải bài tập Toán 8 trang 46 Luyện tập chung SGK toán 8 tập 1 Kết nối tri thức. Phân tích các đa thức sau thành nhân tử:
Giải bài tập Toán 8 trang 47 Bài tập cuối chương 2 SGK toán 8 tập 1 Kết nối tri thức. Biểu thức (25{x^2} + 20xy + 4{y^2}) viết dưới dạng bình phương của một tổng là:
Giải bài tập Toán 8 trang 51 Bài 10. Tứ giác SGK toán 8 tập 1 Kết nối tri thức. Tính góc chưa biết của các tứ giác trong Hình 3.8.
Giải bài tập Toán 8 trang 55 Bài 11. Hình thang cân SGK toán 8 tập 1 Kết nối tri thức. Vẽ hình thang cân ABCD (AB // CD) biết đáy lớn CD dài 4 cm, cạnh bên dài 2 cm và đường chéo dài 3 cm.