Bài 2.1 trang 33 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Những đẳng thức nào sau đây là hằng đẳng thức?
a) \(x + 2 = 3x + 1\)
b) \(2x\left( {x + 1} \right) = 2{x^2} + 2x\)
c) \(\left( {a + b} \right)a = {a^2} + ba\)
d) \(a - 2 = 2a + 1\)
Phương pháp:
Hằng đẳng thức là đẳng thức mà hai vế luôn cùng nhận một giá trị khi thay các chữ trong đẳng thức bằng các số tùy ý.
Lời giải:
a) Đẳng thức x + 2 = 3x + 1 không phải là hằng đẳng thức vì khi x = 0 thì kết quả ở vế trái bằng 2, vế phải bằng 1, khi đó kết quả của hai vế không bằng nhau;
b) Đẳng thức 2x(x + 1) = 2x2 + 2x là hằng đẳng thức;
c) Đẳng thức (a + b)a = a2 + ba là hằng đẳng thức;
d) Đẳng thức a – 2 = 2a + 1 không phải là hằng đẳng thức vì khi x = 2 thì kết quả ở vế trái bằng 0, vế phải bằng 5, khi đó kết quả của hai vế không bằng nhau.
Bài 2.2 trang 33 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Thay bằng biểu thức thích hợp.
a) \(\left( {x - 3y} \right)\left( {x + 3y} \right) = {x^2} - ?\);
b) \(\left( {2x - y} \right)\left( {2x + y} \right) = 4? - {y^2}\);
c) \({x^2} + 8xy + ? = {\left( {? + 4y} \right)^2}\);
d) \(? - 12xy + 9{y^2} = {\left( {2x - ?} \right)^2}\).
Phương pháp:
Sử dụng ba hằng đẳng thức:
\(\begin{array}{l} + ){A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\\ + ){\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\ + ){\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\end{array}\)
Lời giải:
a) \(\left( {x - 3y} \right)\left( {x + 3y} \right) = {x^2} - 9{y^2}\);
b) \(\left( {2x - y} \right)\left( {2x + y} \right) = 4{x^2} - {y^2}\);
c) \({x^2} + 8xy + 16{y^2} = {\left( {x + 4y} \right)^2}\);
d) \(4{x^2} - 12xy + 9{y^2} = {\left( {2x - 3y} \right)^2}\).
Bài 2.3 trang 33 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Tính nhanh:
a) \(54.66\);
b) \({203^2}\).
Phương pháp:
Sử dụng 2 hằng đẳng thức:
\(\begin{array}{l} + ){A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\\ + ){\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\end{array}\)
Lời giải:
a) 54 . 66 = (60 – 6)(60 + 6) = 602 – 62
= 3 600 – 36 = 3564;
b) 2032 = (200 + 3)2 = 2002 + 2 . 200 . 3 + 32
= 40 000 + 1 200 + 9 = 41 209.
Bài 2.4 trang 33 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a) \({x^2} + 4x + 4\)
b) \(16{a^2} - 16ab + 4{b^2}\)
Phương pháp:
Sử dụng 2 hằng đẳng thức:
\(\begin{array}{l} + ){\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\ + ){\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\end{array}\)
Lời giải:
a) \({x^2} + 4x + 4 = {x^2} + 2.x.2 + {2^2} = {\left( {x + 2} \right)^2}\)
b) \(16{a^2} - 16ab + 4{b^2} = {\left( {4a} \right)^2} - 2.4a.2b + {\left( {2b} \right)^2} = {\left( {4a - 2b} \right)^2}\)
Bài 2.5 trang 33 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Rút gọn các biểu thức sau:
a) \({\left( {x - 3y} \right)^2} - {\left( {x + 3y} \right)^2}\)
b) \({\left( {3x + 4y} \right)^2} + {\left( {4x - 3y} \right)^2}\)
Phương pháp:
Sử dụng ba hằng đẳng thức:
\(\begin{array}{l} + ){A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\\ + ){\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\ + ){\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\end{array}\)
Lời giải:
a) (x – 3y)2 – (x + 3y)2 = [(x – 3y) + (x + 3y)] [(x – 3y) – (x + 3y)]
= (x – 3y + x + 3y)(x – 3y – x – 3y) = 2x . (–6y) = –12xy;
b) (3x + 4y)2 + (4x – 3y)2
= (3x)2 + 2 . 3x . 4y + (4y)2 + (4x)2 – 2 . 4x . 3y + (3y)2
= (3x)2 + (4y)2 + (4x)2 + (3y)2 = 9x2 + 16y2 + 16x2 + 9y2
= 25x2 + 25y2.
Bài 2.6 trang 33 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Chứng minh rằng với mọi số tự nhiên n, ta có:
\({\left( {n + 2} \right)^2} - {n^2}\) chia hết cho 4.
Phương pháp:
Sử dụng hằng đẳng thức \({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\)
Nếu 2 số nguyên a, b thỏa mãn a chia hết cho 4 thì a.b chia hết cho 4.
Lời giải:
Ta có:
\({\left( {n + 2} \right)^2} - {n^2} = \left( {n + 2 - n} \right).\left( {n + 2 + n} \right) = 2.\left( {2n + 2} \right) = 2.2.\left( {n + 1} \right) = 4.\left( {n + 1} \right)\).
Vì \(4 \vdots 4\) nên \(4\left( {n + 1} \right) \vdots 4\) với mọi số tự nhiên n.
Giaibaitap.me
Giải bài tập Toán 8 trang 36 Bài 7. Lập phương của một tổng. Lập phương của một hiệu SGK toán 8 tập 1 Kết nối tri thức. Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu.
Giải bài tập Toán 8 trang 39 Bài 8. Tổng và hiệu hai lập phương SGK toán 8 tập 1 Kết nối tri thức. Viết các đa thức sau dưới dạng tích:
Giải bài tập Toán 8 trang 41 Luyện tập chung SGK toán 8 tập 1 Kết nối tri thức. Tính nhanh giá trị của các biểu thức: Rút gọn biểu thức sau:
Giải bài tập Toán 8 trang 44 Bài 9. Phân tích đa thức thành nhân tử SGK toán 8 tập 1 Kết nối tri thức. Phân tích các đa thức sau thành nhân tử: