Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 12 Nâng cao

CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

Giải bài tập trang 130, 131 ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit SGK Giải tích 12 Nâng cao. Câu 88: Gọi c là cạnh huyền, a và b là hai cạnh góc vuông của một tam giác vuông. Chứng minh rằng...

Bài 88 trang 130 SGK giải tích 12 nâng cao

Gọi c là cạnh huyền, a và b là hai cạnh góc vuông của một tam giác vuông. Chứng minh rằng: 

\({\log _{b + c}}a + {\log _{c - b}}a = 2{\log _{b + c}}a.{\log _{c - b}}a.\) 

Giải

Ta có: \({\log _{b + c}}a + {\log _{c - b}}a = 2{\log _{b + c}}a.{\log _{c + b}}a.\)

\(\eqalign{
& \Leftrightarrow {1 \over {{{\log }_a}\left( {b + c} \right)}} + {1 \over {{{\log }_a}\left( {c - b} \right)}} \cr&\;\;\;= {2 \over {{{\log }_a}\left( {b + c} \right).{{\log }_a}\left( {c - b} \right)}} \cr 
& \Leftrightarrow {\log _a}\left( {c - b} \right) + {\log _a}\left( {b + c} \right) = 2 \cr 
& \Leftrightarrow {\log _a}\left( {c - b} \right)\left( {b + c} \right) = 2 \cr 
& \Leftrightarrow {c^2} - {b^2} = {a^2} \Leftrightarrow {a^2} + {b^2} = {c^2} \cr} \) 

Tam giác vuông cạnh huyền c, hai cạnh góc vuông a và b nên ta có \({a^2} + {b^2} = {c^2}\) từ đó suy ra đpcm.

Bài 89 trang 131 SGK giải tích 12 nâng cao

Chứng minh rằng hàm số \(y = \ln {1 \over {1 + x}}\) thỏa mãn hệ thức \(xy' + 1 = {e^y}\)

Giải

Điều kiện: \(x > -1\). Ta có \(y =  - \ln \left( {1 + x} \right) \Rightarrow y' =  - {1 \over {1 + x}}\)

Khi đó: \(xy' + 1 = {{ - x} \over {1 + x}} + 1 = {1 \over {1 + x}} = {e^{\ln {1 \over {1 + x}}}} = {e^y}\)

Vậy \(xy' + 1 = {e^y}\)

Bài 90 trang 131 SGK giải tích 12 nâng cao

Giả sử đồ thị (G) của hàm số \(y = {{{{\left( {\sqrt 2 } \right)}^x}} \over {\ln 2}}\) cắt trục tung tại điểm A và tiếp tuyến của (G) tại A cắt trục hoành tại điểm B. Tính giá trị gần đúng của diện tích của tam giác OAB (chính xác đến hàng phần nghìn).

Giải

\(x = 0 \Rightarrow y = {1 \over {\ln 2}}\)
Tọa độ điểm \(A\left( {0;{1 \over {\ln 2}}} \right)\).
Vậy \(OA = {1 \over {\ln 2}}\)
Ta có \(y' = {{{{\left( {\sqrt 2 } \right)}^x}.\ln \sqrt 2 } \over {\ln 2}} = {1 \over 2}{\left( {\sqrt 2 } \right)^x} \Rightarrow y'\left( 0 \right) = {1 \over 2}\)
Phương trình tiếp tuyến tại A là: \(y - {1 \over {\ln 2}} = {1 \over 2}x \Rightarrow y = {1 \over 2}x + {1 \over {\ln 2}}\)
Giao điểm B của tiếp tuyến với trục hoành \(B\left( { - {2 \over {\ln 2}};0} \right)\) suy ra \(OB = {2 \over {\ln 2}}\)
Vậy \({S_{OAB}} = {1 \over 2}OA.OB = {1 \over 2}.{1 \over {\ln 2}}.{2 \over {\ln 2}} = {1 \over {{{\ln }^2}2}} \approx 2,081\)

Bài 91 trang 131 SGK giải tích 12 nâng cao

Kí hiệu M là một điểm thuộc đồ thị của hàm số \(y = {\log _a}x\). Trong hai khẳng định \(a > 1\) và \(0 < a < 1\), khẳng định nào đúng trong mỗi trường hợp sau? Vì sao?

a) M có tọa độ (0,5; -7);                 b) M có tọa độ (0,5; 7);

c) M có tọa độ (3; 5,2);                  d) M có tọa độ (3; -5,2).

Giải

Gọi (C) là đồ thị hàm số \(y = {\log _a}x\)
a) \(M \in \left( C \right)\) nên \({\log _a}0,5 =  - 7 \Leftrightarrow {1 \over 2} = {a^{ - 7}} \Leftrightarrow {a^7} = 2 \Leftrightarrow a = \root 7 \of 2 \)
Vậy a > 1
b) \(M\left( {0,5;7} \right) \in \left( C \right)\) nên \({\log _a}0,5 = 7 \Leftrightarrow {1 \over 2} = {a^7} \Leftrightarrow {a^7} = {1 \over 2} \Leftrightarrow a = \root 7 \of {{1 \over 2}} \)
Vậy \(0 < a < 1\)
c) \(M\left( {3;5,2} \right) \in \left( C \right)\) nên \({\log _a}3 = 5,2 \Leftrightarrow {a^{5,2}} = 3 \Leftrightarrow a = {3^{{1 \over {5,2}}}} > 1\)
Vậy a > 1
d) \(M\left( {3; - 5,2} \right) \in \left( C \right)\) nên \({\log _a}3 =  - 5,2 \Leftrightarrow {a^{ - 5,2}} = 3 \Leftrightarrow {a^{5,2}} = {1 \over 3} \Leftrightarrow a = {1 \over {{3^{5,2}}}}\)
Vậy \(0 < a < 1\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác