Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 12 Nâng cao

CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Giải bài tập trang 90 bài 2 phương trình mặt phẳng SGK Hình học 12 Nâng cao. Câu 18: Với giá trị nào của m thì:...

Bài 18 trang 90 SGK Hình học 12 Nâng cao

Cho hai mặt phẳng có phương trình là 
\(2x - my + 3z - 6 + m = 0\) và \(\left( {m + 3} \right)x - 2y + \left( {5m + 1} \right)z - 10 = 0\)
Với giá trị nào của m thì:
a) Hai mặt phẳng đó song song ;
b) Hai mặt phẳng đó trùng nhau ;
c) Hai mặt phẳng đó cắt nhau ;
d) Hai mặt phẳng đó vuông góc?

Giải

Mặt phẳng \(2x - my + 3z - 6 + m = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_1}}  = \left( {2; - m;3} \right)\).
Mặt phẳng \(\left( {m + 3} \right)x - 2y + \left( {5m + 1} \right)z - 10 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_2}}  = \left( {m + 3; - 2;5m + 1} \right)\).
Ta có

\(\left[ {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right] = \overrightarrow 0 \Leftrightarrow \left\{ \matrix{
- 5{m^2} - m + 6 = 0 \hfill \cr 
- 7m + 7 = 0 \hfill \cr 
{m^2} + 3m - 4 = 0 \hfill \cr} \right. \Leftrightarrow m = 1\)

Với m = 1 thì hai mặt phẳng có phương trình \(2x - y + 3z - 5 = 0\) và \(4x - 2y + 6z - 10 = 0\) nên chúng trùng nhau. Vậy:

a) Không tồn tại m để hai mặt phẳng đó song song.
b) Với m = 1 thì hai mặt phẳng đó trùng nhau.
c) Với \(m \ne 1\) thì hai mặt phẳng đó cắt nhau.
d) Hai mặt phẳng đó vuông góc với nhau khi và chỉ khi

\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 0 \Leftrightarrow 2\left( {m + 3} \right) + 2m + 3\left( {5m + 1} \right) = 0 \)

\(\Leftrightarrow 19m + 9 = 0 \Leftrightarrow m = {{ - 9} \over {19}}\)

Bài 19 trang 90 SGK Hình học 12 Nâng cao

Tìm tập hợp các điểm cách đều hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( {\alpha '} \right)\) trong mỗi trường hợp sau:

\(\eqalign{
& a)\,\,\left( \alpha \right):2x - y + 4z + 5 = 0,\cr&\left( {\alpha '} \right):3x + 5y - z - 1 = 0 \cr 
& b)\,\,\left( \alpha \right):2x + y - 2z - 1 = 0,\cr&\left( {\alpha '} \right):6x - 3y + 2z - 2 = 0 \cr 
& c)\,\,\left( \alpha \right):x + 2y + z - 1 = 0,\cr&\left( {\alpha '} \right):x + 2y + z + 5 = 0 \cr} \)

Giải
a) Điểm \(M\left( {x,y,z} \right)\) cách đều hai mặt phẳng đã cho khi và chỉ khi:

\(\eqalign{
& {{\left| {2x - y + 4z + 5} \right|} \over {\sqrt {4 + 1 + 16} }} = {{\left| {3x + 5y - z - 1} \right|} \over {\sqrt {9 + 25 + 1} }} \cr 
& \Leftrightarrow \sqrt 5 \left| {2x - y + 4z + 5} \right| = \sqrt 3 \left| {3x + 5y - z - 1} \right| \cr 
& \Leftrightarrow \sqrt 5 \left( {2x - y + 4z + 5} \right) = \pm \sqrt 3 \left( {3x + 5y - z - 1} \right) \cr} \)

Vậy tập hợp các điểm M là hai mặt phẳng:

\(\eqalign{
& \left( {2\sqrt 5 - 3\sqrt 3 } \right)x - \left( {\sqrt 5 + 5\sqrt 3 } \right)y + \left( {4\sqrt 5 + \sqrt 3 } \right)z \cr&+ 5\sqrt 5 + \sqrt 3 = 0 \cr 
& \left( {2\sqrt 5 + 3\sqrt 3 } \right)x - \left( {\sqrt 5 - 5\sqrt 3 } \right)y + \left( {4\sqrt 5 - \sqrt 3 } \right)z\cr& + 5\sqrt 5 - \sqrt 3 = 0 \cr} \)

b) Điểm \(M\left( {x,y,z} \right)\) cách đều hai mặt phẳng đã cho khi và chỉ khi:

\(\eqalign{
& {{\left| {2x + y - 2z - 1} \right|} \over {\sqrt {4 + 1 + 4} }} = {{\left| {6x - 3y + 2z - 2} \right|} \over {\sqrt {36 + 9 + 4} }} \cr 
& \Leftrightarrow \left[ \matrix{
7\left( {2x + y - 2z - 1} \right) = 3\left( {6x - 3y + 2z - 2} \right) \hfill \cr 
7\left( {2x + y - 2z - 1} \right) = - 3\left( {6x - 3y + 2z - 2} \right) \hfill \cr} \right. \cr&\Leftrightarrow \left[ \matrix{
- 4x + 16y - 20z - 1 = 0 \hfill \cr 
32x - 2y - 8z - 13 = 0 \hfill \cr} \right. \cr} \)

Tập hợp các điểm M là hai mặt phẳng có phương trình:

\( - 4x + 16y - 20z - 1 = 0\,\,;32x - 2y - 8z - 13 = 0\).

c) Điểm \(M\left( {x,y,z} \right)\) cách đều hai mặt phẳng đã cho khi và chỉ khi:

\(\eqalign{
& {{\left| {x + 2y + z - 1} \right|} \over {\sqrt {1 + 4 + 1} }} = {{\left| {x + 2y + z + 5} \right|} \over {\sqrt {1 + 4 + 1} }} \cr 
& \Leftrightarrow \left[ \matrix{
x + 2y + z - 1 = x + 2y + z + 5 \hfill \cr 
x + 2y + z - 1 = - x - 2y - z - 5 \hfill \cr} \right. \cr&\Leftrightarrow 2x + 4y + 2z + 4 = 0 \cr} \)

Tập hợp các điểm M là một mặt phẳng có phương trình : \(x + 2y + z + 2 = 0\).

Bài 20 trang 90 SGK Hình học 12 Nâng cao

Tìm khoảng cách giữa hai mặt phẳng

\(Ax + By + Cz + D = 0\) và \(Ax + By + Cz + D' = 0\) với \(D \ne D'\).

Giải

Hai mặt phẳng đã cho song song với nhau.

Lấy \(M\left( {{x_0},{y_0},{z_0}} \right)\) thuộc mặt phẳng \(Ax + By + Cz + D = 0\).

Ta có \(A{x_0} + B{y_0} + C{z_0} + D = 0 \)

\(\Rightarrow A{x_0} + B{y_0} + C{z_0} =  - D\)

Khoảng cách giữa hai mặt phẳng bằng khoảng cách từ điểm M đến mặt phẳng thứ hai, ta có:

\(d = {{\left| {A{x_0} + B{y_0} + C{z_0} + D'} \right|} \over {\sqrt {{A^2} + {B^2} + {C^2}} }} = {{\left| {D' - D} \right|} \over {\sqrt {{A^2} + {B^2} + {C^2}} }}\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác