Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 10

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Giải bài tập trang 143 bài 1 phương trình đường thẳng Sách bài tập (SBT) Toán Hình học 10. Câu 3.5: Cho M(1;2). Hãy lập phương trình của đường thẳng đi qua M và chắn trên hai trục tọa độ hai đoạn có độ dài bằng nhau...

Bài 3.5 trang 143 Sách bài tập (SBT) Toán Hình học 10

Cho M(1;2). Hãy lập phương trình của đường thẳng đi qua M và chắn trên hai trục tọa độ hai đoạn có độ dài bằng nhau.

Gợi ý làm bài

Trường hợp 1: \(a \ne 0\) và \(b \ne 0\)

Phương trình \(\Delta \) có dạng: \({x \over a} + {y \over b} = 1.\)

Ta có: \(\left| a \right| = \left| b \right|\)

(+) b = a

\(\Delta \) có dạng: \({x \over a} + {y \over a} = 1.\)

\(M \in \Delta  \Leftrightarrow {1 \over a} + {2 \over a} = 1 \Leftrightarrow a = 3\)

Vậy: \(\Delta :{x \over 3} + {y \over 3} = 1 \Leftrightarrow x + y - 3 = 0.\)

(+) b = -a

\(\Delta \) có dạng: \({x \over a} + {y \over { - a}} = 1.\)

\(M \in \Delta  \Leftrightarrow {1 \over a} + {2 \over { - a}} = 1 \Leftrightarrow a =  - 1\)

Vậy: \(\Delta :{x \over { - 1}} + {y \over 1} = 1 \Leftrightarrow x - y + 1 = 0.\)

Trường hợp 2: b = a = 0 

\(\Delta \) đi qua M và O nên có phương trình 2x - y = 0

 


Bài 3.6 trang 143 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác ABC, biết phương trình đường thẳng AB:x - 3y + 11 = 0, đường cao AH = 3x + 7y - 15 = 0, đường cao BH:3x - 5y + 13 = 0. Tìm phương trình hai đường thẳng chứa hai cạnh còn lại của tam giác.

Gợi ý làm bài

Theo đề bài tọa độ điểm A luôn thỏa mãn hệ phương trình:

\(\left\{ \matrix{
x - 3y = - 11 \hfill \cr
3x + 7y = 15 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 2 \hfill \cr
y = 3. \hfill \cr} \right.\)

Vì \(AC \bot BH\) nên C có dạng: 5x + 3y + c = 0, ta có:

\(A \in AC \Leftrightarrow  - 10 + 9 + c = 0 \Leftrightarrow c = 1.\)

Vậy phương trình đường thẳng chứa cạnh AC: 5x + 3y + 1 = 0.

Tọa độ của điểm B luôn thỏa mãn hệ phương trình: 

\(\left\{ \matrix{
x - 3y = - 11 \hfill \cr
3x - 5y = - 13 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 4 \hfill \cr
y = 5. \hfill \cr} \right.\)

Vì \(BC \bot AH\) nên BC có dạng: \(7x - 3y + c = 0\), ta có:

\(B \in BC \Leftrightarrow 28 - 15 + c = 0 \Leftrightarrow c =  - 13.\)

Vậy phương trình đường thẳng chứa cạnh BC: 7x - 3y - 13 = 0.

 

Bài 3.7 trang 143 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác ABC có A(-2;3) và hai đường trung tuyến: 2x - y + 1 = 0 và x + y - 4 = 0. Hãy viết phương trình ba đường thẳng chứa ba cạnh của tam giác.

Gợi ý làm bài

Hai đường trung tuyến đã cho đều không phải là đường trung tuyến xuất phát từ A vì tọa độ A không thỏa mãn các phương trình của chúng. Đặt BM: 2x - y + 1 = 0 và CN: x + y - 4 = 0 là hai trung tuyến của tam giác ABC.

Đặt B(x;y), ta có \(N\left( {{{x - 2} \over 2};{{y + 3} \over 2}} \right)\) và

\(\left\{ \matrix{
B \in BM \hfill \cr
N \in CN \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x - y + 1 = 0 \hfill \cr
{{x - 2} \over 2} + {{y + 3} \over 2} - 4 = 0 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
2x - y = - 1 \hfill \cr
x + y = 7 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
x = 2 \hfill \cr
y = 5 \hfill \cr} \right.\)

Vậy phương trình đường thẳng chứa cạnh AB là : 2x - 4y + 16 = 0

\( \Leftrightarrow x - 2y + 8 = 0\)

Tương tự ta có phương trình đường thẳng chứa cạnh AC là : 2x + 5y - 11 = 0

Phương trình đường thẳng chứa cạnh BC là : 4x + y - 13 = 0

 


Bài 3.8 trang 143 Sách bài tập (SBT) Toán Hình học 10

Với giá trị nào của tham số m thì hai đường thẳng sau đây vuông góc:

\({\Delta _1}:mx + y + q = 0\) và \({\Delta _2}:x - y + m = 0\)

Gợi ý làm bài

\({\Delta _1}\) và \({\Delta _2}\) có vectơ pháp tuyến lần lượt là \({\overrightarrow n _1} = (m;1)\)

\(\overrightarrow {{n_2}}  = (1; - 1)\)

Ta có: \({\Delta _1} \bot {\Delta _2} \Leftrightarrow \overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 0\)

\( \Leftrightarrow m - 1 = 0\)

\( \Leftrightarrow m = 1.\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác