Bài 33 trang 114 Sách bài tập (SBT) Toán Đại số 10
Giải bất phương trình sau:
\({1 \over {x - 1}} + {1 \over {x + 2}} > {1 \over {x - 2}}\)
Gợi ý làm bài
\({1 \over {x - 1}} + {1 \over {x + 2}} > {1 \over {x - 2}} \Leftrightarrow {{x + 2 + x - 1} \over {(x + 2)(x - 1)}} > {1 \over {x - 2}}\)
\( \Leftrightarrow {{(2x + 1)(x - 2) - (x - 1)(x + 2)} \over {(x - 1)(x + 2)(x - 2)}} > 0\)
\( \Leftrightarrow {{{x^2} - 4x} \over {(x - 1)(x + 2)(x - 2)}} > 0\)
\( \Leftrightarrow {{x(x - 4)} \over {(x - 1)(x + 2)(x - 2)}} > 0(1)\)
Bảng xét dấu vế trái của (1)
Đáp số: \( - 2 < x < 0;1 < x < 2;4 < x < + \infty \)
Bài 34 trang 114 Sách bài tập (SBT) Toán Đại số 10
Giải bất phương trình sau:
\(|x - 3| > - 1\)
Gợi ý làm bài
Vì \(|x - 3| \ge 0,\forall x\) nên \(|x - 3| > - 1,\forall x\)
Tập nghiệm của bất phương trình là \(( - \infty ; + \infty )\)
Bài 35 trang 114 Sách bài tập (SBT) Toán Đại số 10
Giải bất phương trình sau:
\(|5 - 8x| \le 11\)
Gợi ý làm bài
\(|5 - 8x| \le 11 \Leftrightarrow |8x - 5| \le 11 \Leftrightarrow - 11 \le 8x - 5 \le 11\)
\( - 11x + 5 \le 8x \le 11 + 5 \Leftrightarrow {{ - 3} \over 4} \le x \le 2\)
Đáp số: \({{ - 3} \over 4} \le x \le 2\)
Bài 36 trang 114 Sách bài tập (SBT) Toán Đại số 10
Giải bất phương trình sau:
\(|x + 2| + \left| { - 2x + 1} \right| \le x + 1\)
Gợi ý làm bài
Bỏ dấu giá trị tuyệt đối ở vế trái của bất phương trình ta có:
Bất phương trình đã cho tương đương với
\(\eqalign{
& \left[ \matrix{
\left\{ \matrix{
x \le - 2 \hfill \cr
- (x + 2) + ( - 2x + 1) \le x + 1 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
- 1 < x \le {1 \over 2} \hfill \cr
(x + 2) + ( - 2x + 1) \le x + 1 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
x > {1 \over 2} \hfill \cr
(x + 2) - ( - 2x + 1) \le x + 1 \hfill \cr} \right. \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x \le - 2 \hfill \cr
4x \ge - 2 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
- 1 < x \le {1 \over 2} \hfill \cr
2x \ge 2 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
x \ge {1 \over 2} \hfill \cr
2x \le 0 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x \le - 2 \hfill \cr
x \ge - {1 \over 2} \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
- 2 < x \le {1 \over 2} \hfill \cr
x \ge 1 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
x > {1 \over 2} \hfill \cr
x \le 0 \hfill \cr} \right. \hfill \cr} \right. \cr} \)
(Vô nghiệm)
Vậy bất phương trình đã cho vô nghiệm.
Giaibaitap.me
Giải bài tập trang 117, 118, 119 bài 4 bất phương trình bậc nhất hai ẩn Sách bài tập (SBT) Toán Đại số 10. Câu 37: Biểu diễn hình học tập nghiệm của các bất phương trình sau...
Giải bài tập trang 122 bài 5 dấu của tam thức bậc hai Sách bài tập (SBT) Toán Đại số 10. Câu 40: Xét dấu của tam thức bậc hai sau...
Giải bài tập trang 122 bài 5 dấu của tam thức bậc hai Sách bài tập Toán Đại số 10. Câu 44: Giải các bất phương trình sau...
Giải bài tập trang 122, 123 bài 5 dấu của tam thức bậc hai Sách bài tập (SBT) Toán Đại số 10. Câu 48: Giải các bất phương trình, hệ bất phương trình (ẩn m) sau...