Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 10

CHƯƠNG III. PHƯƠNG TRÌNH. HỆ PHƯƠNG TRÌNH

Giải bài tập trang 79 bài ôn tập chương III Sách bài tập (SBT) Toán Đại số 10. Câu 31: Nếu lấy một số có hai chữ số chia cho tích hai chữ số của nó thì được thương là 2 và dư là 18...

Bài 31 trang 79 Sách bài tập (SBT) Toán Đại số 10

Nếu lấy một số có hai chữ số chia cho tích hai chữ số của nó thì được thương là 2 và dư là 18. Nếu lấy tổng bình phương các chữ số của số đó cộng với 9 thì được số đã cho. Hãy tìm số đó.

Gợi ý làm bài

Gọi a là chữ số hàng chục, b là chữ số hàng đơn vị. Điều kiện a, b nguyên \(1 \le a \le 9\) và \(0 \le b \le 9\). Ta có:

\(\left\{ \matrix{
10a + b = 2ab + 18 \hfill \cr
{a^2} + {b^2} + 9 = 10a + b \hfill \cr} \right.\)

=> \({a^2} + {b^2} + 9 = 2ab + 18\)

=> \({(a - b)^2} = 9 =  > a - b =  \pm 3\)

Trường hợp 1

a - b = 3 => a = b + 3

Thay vào phương trình đầu của hệ phương trình ta được:

\(11b + 30 = 2(b + 3)b + 18 =  > 2{b^2} - 5b - 12 = 0\)

Phương trình cuối có hai nghiệm: \({b_1} = 4,{b_2} =  - {3 \over 2}\)

Giá trị \({b_2} =  - {3 \over 2}\) không thỏa mãn điều kiện \(0 \le b \le 9\) nên nên bị loại.

Vậy b = 4, suy ra a = 7.

Trường hợp 2

a - b = - 3 => a = b - 3

Thay vào phương trình của hệ phương trình ra được

\(11b - 30 = 2(b - 3)b + 18 =  > 2{b^2} - 17b + 48 = 0\)

Phương trình này vô nghiệm.

Vậy số phải tìm là 74.


Bài 32 trang 79 Sách bài tập (SBT) Toán Đại số 10

Một đoàn xe tải chở 290 tấn xi măng cho một công trình xây đập thủy điện. Đoàn xe có 57 chiếc gồm ba loại, xe chở 3 tấn, xe chở 5 tấn và xe chở 7,5 tấn. Nếu dùng tất cả xe 7,5 tấn chở ba chuyến thì được số xi măng bằng tổng số xi măng do xe 5 tấn chở ba chuyến và xe 3 tấn chở hai chuyến. Hỏi số xe mỗi loại?

Gợi ý làm bài

Gọi x là số xe tải chở 3 tấn, y là số xe chở 5 tấn và z là số xe tải chở 7,5 tấn. Điều kiện x, y, z nguyên dương.

Theo giả thiết của bài toán ta có:

\(\left\{ \matrix{
x + y + z = 57 \hfill \cr
3x + 5y + 7,5z = 290 \hfill \cr
22,5z = 6x + 15y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x + y + z = 57 \hfill \cr
3x + 5y + 7,5z = 290 \hfill \cr
- 2x - 5y + 7,5x = 0 \hfill \cr} \right.\)

Cộng từng vế phương trình thứ hai với phương trình thứ ba ta được hệ phương trình

\(\left\{ \matrix{
x + y + z = 57 \hfill \cr
3x + 5y + 7,5z = 290 \hfill \cr
x + 15z = 290 \hfill \cr} \right.\)

Nhân hai vế của phương trình thứ nhất với -5 rồi cộng từng vế với phương trình thứ hai ta được

\(\left\{ \matrix{
x + y + z = 57 \hfill \cr
- 2x + 2,5y = 5 \hfill \cr
x + 15z = 290 \hfill \cr} \right.\)

Từ phương trình cuối suy ra x = 290 – 15z

Thay giá trị tìm được của x vào phương trình thứ hai ta được \(32,5z = 585\) hay z = 18.

Từ đó suy ra x = 20, y = 19. Các giá trị của x, y, z vừa tìm được thỏa mãn điều kiện của bài toán.

Vậy có 20 xe chở 3 tấn, 19 xe chở 5 tấn và 18 xe chở 7,5 tấn.

 


Bài 33 trang 79 Sách bài tập (SBT) Toán Đại số 10

Giải và biện luận theo tham số m hệ phương trình:

\(\left\{ \matrix{
2x(3m + 1)y = m - 1 \hfill \cr
(m + 2)x + (4m + 3)y = m \hfill \cr} \right.\)

Hướng dẫn: Giải và biện luận theo m có nghĩa là xét xem với giá trị nào của m thì hệ phương trình vô nghiệm, với giá trị nào của m thì hệ phương trình có 1 nghiệm, giá trị nghiệm là bao nhiêu, với giá trị nào của m thì hệ phương trình có vô số nghiệm.

Để Giải và biện luận hệ phương trình trên ta dùng phương pháp cộng đại số để khử một ẩn.

Gợi ý làm bài

Nhân phương trình thứ nhất của hệ với m + 2, nhân phương trình thứ hai với 2 ta được hệ phương trình

\(\left\{ \matrix{
2(m + 2)x + (3m + 1)(m + 2)y = (m - 1)(m + 2) \hfill \cr
2(m + 2)x + 2(4m + 3)y = 2m \hfill \cr} \right.\)

Trừ hai phương trình vế theo vế ta được phương trình:

\((3{m^2} - m - 4)y = (m + 1)(m - 2)\) (1)

+Với m = -1 phương trình (1) có dạng:

0y = 0

Phương trình này nhận mọi giá trị thức của y làm nghiệm. Lúc đó thay m = -1 vào hệ phương trình đã cho, hai phương trình trở thành một phương trình.

\(x - y =  - 1 =  > y = x + 1\), x  tùy ý.

+Với \(m = {4 \over 3}\) phương trình (1) có dạng.

\(0y =  - {{14} \over 9}\)

Phương trình này vô nghiệm, do đó hệ phương trình đã cho vô nghiệm.

+Với \(m \ne  - 1\) và \(m \ne {4 \over 3}\), phương trình (1) có nghiệm duy nhất 

\(y = {{m - 2} \over {3m - 4}}\)

Thay vào một trong hai phương trình của hệ đã cho ta suy ra 

\(x = {{ - m + 3} \over {3m - 4}}\)

Kết luận

 

\(m = {4 \over 3}\): Hệ phương trình đã cho vô nghiệm.

\(m =  - 1\): Hệ phương trình đã cho có vô số nghiệm 

\(x = a,y = a + 1\), a là số thực tùy ý.

\(m \ne  - 1\), \(m \ne {4 \over 3}\): Hệ phương trình đã cho có nghiệm duy nhất :

\(m \ne  - 1\) và \((x;y) = ({{3 - m} \over {3m - 4}};{{m - 2} \over {3m - 4}})\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác