Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 10 Nâng cao

CHƯƠNG IV. BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH

Giải bài tập trang 121 bài 3 bất phương trình và hệ bất phương trình bậc nhất một ẩn SGK Đại số 10 nâng cao. Câu 25: Giải các bất phương trình...

Câu 25 trang 121 SGK Đại số 10 nâng cao

Giải các bất phương trình

a) \({{x + 2} \over 3} - x + 1 > x + 3\)

b) \({{3x + 5} \over 2} - 1 \le {{x + 2} \over 3} + x\)

c) \((1 - \sqrt 2 )x < 3 - 2\sqrt 2 \)

d) \({(x + \sqrt 3 )^2} \ge {(x - \sqrt 3 )^2} + 2\)

Đáp án 

a) Ta có:

\(\eqalign{
& {{x + 2} \over 3} - x + 1 > x + 3\cr& \Leftrightarrow x + 2 - 3x + 3 > 3x + 9 \cr
& \Leftrightarrow - 5x < 4 \Leftrightarrow x < - {4 \over 5} \cr} \)

Vậy  \(S = ( - \infty ; - {4 \over 5})\)  

b) Ta có:

\(\eqalign{
& {{3x + 5} \over 2} - 1 \le {{x + 2} \over 3} + x \cr&\Leftrightarrow 9x + 15 - 6 \le 2x + 4 + 6x \cr
& \Leftrightarrow x \le -5 \cr} \)

Vậy \(S = (-∞; -5)\)

c)

\(\eqalign{
& (1 - \sqrt 2 )x < 3 - 2\sqrt 2 \Leftrightarrow (1 - \sqrt 2 )x < {(1 - \sqrt 2 )^2} \cr
& \Leftrightarrow x > {{{{(1 - \sqrt 2 )}^2}} \over {1 - \sqrt 2 }} = 1 - \sqrt 2 \,\,(do\;1 - \sqrt 2 < 0) \cr} \) 

Vậy \(S = (1 - \sqrt 2 ; + \infty )\)

d)

\(\eqalign{
& {(x + \sqrt 3 )^2} \ge {(x - \sqrt 3 )^2} + 2 \cr
& \Leftrightarrow {(x + \sqrt 3 )^2} - {(x - \sqrt 3 )^2} \ge 2 \cr
& \Leftrightarrow 4\sqrt 3 x \ge 2 \Leftrightarrow x \ge {1 \over {2\sqrt 3 }} \cr} \)

Vậy \(S = {\rm{[}}{1 \over {2\sqrt 3 }};\, + \infty )\)

 


Câu 26 trang 121 SGK Đại số 10 nâng cao

Giải và biện luận các bất phương trình

a) \(m(x – m) ≤ x – 1\) ;

b) \(mx + 6 > 2x + 3m\)

c) \((x + 1)k + x < 3x + 4\)

d) \((a + 1)x + a + 3 ≥ 4x + 1\)

Giải

a) \(m(x – m) ≤ x – 1 ⇔ (m – 1)x ≤ m^2– 1\)

+ Nếu \(m > 1\) thì \(x ≤ m + 1;  S = (-∞, m + 1]\)

+ Nếu \(m < 1\) thì \(x ≥ m + 1; S = [m + 1; +∞)\)

+ Nếu \(m = 1\) thì \(S = R\)

b) \(mx + 6 > 2x + 3m ⇔ (m – 2)x > 3(m – 2)\)

+ Nếu \(m > 2\) thì \(S = (3, +∞)\)

+ Nếu \(m < 2\) thì \(S = (-∞, 3)\)

+ Nếu \(m = 2\) thì \(S = Ø\)

c) \((x + 1)k + x < 3x + 4 ⇔(k – 2)x < 4 – k\)

+ Nếu \(k > 2\) thì \(S = ( - \infty ,{{4 - k} \over {k - 2}})\)

+ Nếu \(k < 2\) thì \(S = ({{4 - k} \over {k - 2}}, + \infty )\)

+ Nếu \(k = 2\) thì \(S = R\)

d) \((a + 1)x + a + 3 ≥ 4x + 1 ⇔ (a – 3)x ≥ - a – 2\)

+ Nếu \(a > 3\) thì \(S = {\rm{[}}{{a + 2} \over {3 - a}}; + \infty )\)

+ Nếu \(a < 3\) thì \(S = {( - }\infty {\rm{;}}{{a + 2} \over {3 - a}}]\)

+ Nếu \(a = 3\) thì \(S  = R\)

 


Câu 27 trang 121 SGK Đại số 10 nâng cao

Giải các hệ bất phương trình

a)

\(\left\{ \matrix{
5x - 2 > 4x + 5 \hfill \cr
5x - 4 < x + 2 \hfill \cr} \right.\)

b)

\(\left\{ \matrix{
2x + 1 > 3x + 4 \hfill \cr
5x + 3 \ge 8x - 9 \hfill \cr} \right.\)

Giải

a)

\(\left\{ \matrix{
5x - 2 > 4x + 5 \hfill \cr
5x - 4 < x + 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x > 7 \hfill \cr
4x < 6 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x > 7 \hfill \cr
x < {3 \over 2} \hfill \cr} \right.\)

(vô nghiệm)

Vậy \(S = Ø\)

b)

\(\left\{ \matrix{
2x + 1 > 3x + 4 \hfill \cr
5x + 3 \ge 8x - 9 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x < - 3 \hfill \cr
3x \le 12 \hfill \cr} \right. \Leftrightarrow x < - 3\)

Vậy \(S = (-∞, -3)\)

 


Câu 28 trang 121 SGK Đại số 10 nâng cao

Giải và biện luận các bất phương trình sau:

a) \(m(x - m) > 2(4 - x)\);

b) \(3x + m^2≥ m(x + 3)\);

c) \(k(x - 1) + 4x ≥ 5\);

d) \(b(x - 1) ≤ 2 – x\)

Giải

a) Ta có:

\(m(x - m) > 2(4 - x) ⇔ (m + 2)x > m^2+ 8\)

+ Nếu \(m > - 2\) thì \(S = \left( {{{{m^2} + 8} \over {m + 2}}; + \infty } \right)\)

+ Nếu \(m < -2\) thì \(S = \left( { - \infty ;{{{m^2} + 8} \over {m + 2}}} \right)\)

+ Nếu \(m = 2\)  thì \(0x > 12 ; S = Ø\)

b) Ta có:

\(3x +m^2≥ m(x + 3) ⇔ (m – 3)x ≤ m^2– 3m\)

+ Nếu \(m > 3\) thì \(S = (-∞, m]\)

+ Nếu \(m < 3\) thì \(S = [m, +∞)\)

+ Nếu \(m = 3\) thì \(S =\mathbb R\)

c) \(k(x - 1) + 4x ≥ 5 ⇔ (k + 4)x ≥ k + 5\)

+ Nếu \(k > -4\) thì \(S = \left[ {{{k + 5} \over {k + 4}}; + \infty } \right)\)

+ Nếu \(k < -4\) thì \(S = \left( { - \infty ;{{k + 5} \over {k + 4}}} \right]\)

+ Nếu \(k = -4\) thì \(0x ≥ 1\), do đó \(S = Ø\)

d) \(b(x - 1) ≤ 2 – x ⇔ (b + 1)x ≤ b + 2\)

+ Nếu \(b > -1\) thì \(S = \left( { - \infty ;{{b + 2} \over {b + 1}}} \right]\)

+ Nếu \(b < -2\) thì \(S = \left[ {{{b + 2} \over {b + 1}}; + \infty } \right)\)

+ Nếu \(b = -1\) thì \(S =\mathbb R\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác