Câu 56 trang 165 Sách bài tập (SBT) Toán 9 Tập 1
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng:
a) Ba điểm D, A, E thẳng hàng;
b) DE tiếp xúc với đường tròn có đường kính BC.
Giải:
a) Theo tính chất hai tiếp tuyến cắt nhau ta có:
AB là tia phân giác của góc HAD
Suy ra: \(\widehat {DAB} = \widehat {BAH}\)
AC là tia phân giác của góc HAE
Suy ra: \(\widehat {HAC} = \widehat {CAE}\)
Ta có: \(\widehat {HAD} + \widehat {HAE} = 2(\widehat {BAH} + \widehat {HAC}) = 2.\widehat {BAC} = 2.90^\circ = 180^\circ \)
Vậy ba điểm D, A, E thẳng hàng.
b) Gọi M là trung điểm của BC
Theo tính chất của tiếp tuyến, ta có:
\(AD \bot BD;AE \bot CE\)
Suy ra: BD // CE
Vậy tứ giác BDEC là hình thang
Khi đó MA là đường trung bình của hình thang BDEC
Suy ra: \(MA // BD \Rightarrow MA \bot DE\)
Trong tam giác vuông ABC ta có: MA = MB = MC
Suy ra M là tâm đường tròn đường kính BC với MA là bán kính
Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.
Câu 57 trang 165 Sách bài tập (SBT) Toán 9 Tập 1
Chứng minh rằng nếu tam giác ABC có chu vi 2p,bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức:
S = p.r
Giải:
Gọi O là tâm đường tròn nội tiếp tam giác ABC
Nối OA, OB, OC.
Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBC.
Ta có: \({S_{ABC}} = {S_{OAB}} + {S_{OAC}} + {S_{OBC}}\)
\(= {1 \over 2}.AB.r + {1 \over 2}.AC.r + {1 \over 2}.BC.r\)
\(= {1 \over 2}(AB + AC + BC).r\)
Mà AB + AC + BC = 2p
Nên \({S_{ABC}} = {1 \over 2}.2p.r = p.r\)
Loigiaihay.com
Câu 58 trang 165 Sách bài tập (SBT) Toán 9 Tập 1
Cho tam giác ABC vuông tại A. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại D, E.
a) Tứ giác ADOE là hình gì? Vì sao?
b) Tính bán kính của đường tròn (O) biết AB = 3cm, AC = 4cm
Giải:
a) Ta có: \(OD \bot AB \Rightarrow \widehat {ODA} = 90^\circ \)
\(OE \bot AC \Rightarrow \widehat {OEA} = 90^\circ \)
\(\widehat {BAC} = 90^\circ \) (gt)
Tứ giác ADOE có ba góc vuông nên nó là hình chữ nhật
Lại có: AD = AE (tính chất hai tiếp tuyến giao nhau)
Vậy tứ giác ADOE là hình vuông.
b) Áp dụng định lí Pi-ta-go vào tam giác vuông ABC ta có:
\(B{C^2} = A{B^2} + A{C^2} = {3^2} + {4^2} = 25\)
Suy ra: BC = 5 (cm)
Theo tính chất tiếp tuyến giao nhau ta có:
AD = AE
BD = BF
CE = CF
Mà: AD = AB – BD
AE = AC – CF
Suy ra: AD + AE = AB – BD + (AC – CF )
= AB + AC – (BD + CF )
= AB + AC – (BF + CF )
= AB + AC – BC
Suy ra: \( AD = AE = {{AB + AC - BC} \over 2} = {{3 + 4 - 5} \over 2} = 1 (cm)\)
Câu 59 trang 165 Sách bài tập (SBT) Toán 9 Tập 1
Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp, r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng:
AB + AC = 2(R + r).
Giải:
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.
Ta có: BC = 2R
Giả sử đường tròn tâm (O) tiếp với AB tại D, AC tại E và BC tại F.
Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.
Suy ra: AD = AE = EO = OD = r
Theo tính chất hai tiếp tuyến cắt nhau ta có:
AD = AE
BD = BF
CE = CF
Ta có: 2R + 2r = BF + FC + AD + AE
= (BD + AD) + (AE +CE)
= AB + AC
Vậy AB = AC = 2 (R + r).
Giaibaitap.me
Giải bài tập trang 166 bài 6 Tính chất của hai tiếp tuyến cắt nhau Sách bài tập (SBT) Toán 9 tập 2. Câu 60: Cho tam giác ABC, đường tròn (K) bằng tiếp góc trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F...
Giải bài tập trang 166 bài 6 Tính chất của hai tiếp tuyến cắt nhau Sách bài tập (SBT) Toán 9 tập 2. Câu 61: Cho nửa hình tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB)...
Giải bài tập trang 167 bài 6 Tính chất của hai tiếp tuyến cắt nhau Sách bài tập (SBT) Toán 9 tập 2. Câu 6.1: Độ dài mỗi cạnh của tam giác đều ngoại tiếp đường tròn (O ; r) bằng...
Giải bài tập trang 168 bài 7 Vị trí tương đối của hai đường tròn Sách bài tập (SBT) Toán 9 tập 2. Câu 68: Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Gọi I là trung điểm của OO’...