Bài 4.6 trang 83 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Tính các độ dài x, y trong Hình 4.18.
Phương pháp:
Vận dụng tính chất đường trung bình trong tam giác ABC, DEF để tính.
Lời giải:
• Hình 4.18a)
Ta có: DH = HF, H ∈ DF nên H là trung điểm của DF;
EK = KF, K ∈ EF nên K là trung điểm của EF.
Xét tam giác DEF có H, K lần lượt là trung điểm của DF, EF nên HK là đường trung bình của tam giác DEF.
Suy ra \(HK = \frac{1}{2}DE = \frac{1}{2}x\).
Do đó x = 2HK = 2 . 3 = 6.
• Hình 4.18b)
Vì MN ⊥ AB, AC ⊥ AB nên MN // AC.
Mà M là trung điểm của BC (vì AM = BM = 3)
Suy ra MN là đường trung bình của tam giác ABC.
Do đó y = NC = BN = 5.
Vậy x = 6; y = 5.
Bài 4.7 trang 83 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC.
a) Chứng minh tứ giác BMNC là hình thang.
b) Tứ giác MNPB là hình gì? Tại sao?
Phương pháp:
a. Sử dụng tính chất đường trung bình trong tam giác ABC, sử dụng dấu hiệu nhận biết hình thang.
b. Dựa vào dấu hiệu nhận biết, xác định MNPB là hình bình hành
Lời giải:
a) Vì M, N lần lượt là trung điểm của các cạnh AB, AC nên MN là đường trung bình của tam giác ABC suy ra MN // BC.
Tứ giác BMNC có MN // BC nên tứ giác BMNC là hình thang (đpcm).
b) Vì N, P lần lượt là trung điểm của các cạnh AC, BC nên NP là đường trung bình của tam giác ABC suy ra NP // AB hay NP // MB.
Tứ giác MNPB có MN // BP (do MN // BC); BM // NP (chứng minh trên).
Do đó, tứ giác MNPB là hình bình hành.
Bài 4.8 trang 83 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Cho tam giác ABC có trung tuyến AM. Lấy điểm D và E trên cạnh AB sao cho AD = DE = EB và D nằm giữa hai điểm A, E.
a) Chứng minh DC // EM.
b) DC cắt AM tại I. Chứng minh I là trung điểm của AM.
Phương pháp:
a. Chứng minh EM là đường trung bình của tam giác BCD.
b. Chứng minh DI là đường trung bình của tam giác AEM.
Lời giải:
a) Vì AM là đường trung tuyến của tam giác ABC nên M là trung điểm của BC.
Ta có BE = DE và E ∈ BD nên E là trung điểm của BD.
Xét tam giác BCD có E, M lần lượt là trung điểm của BD, BC nên EM là đường trung bình của tam giác BCD.
Do đó DC // EM (tính chất đường trung bình).
b) Ta có D là trung điểm của AE (vì AD = DE, D ∈ AE).
Mà DI // EM (vì DC // EM).
Do đó DI là đường trung bình của tam giác AEM.
Suy ra I là trung điểm của AM.
Bài 4.9 trang 83 sách giáo khoa Toán 8 Kết nối tri thức tập 1
Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD. Chứng minh tứ giác AHOK là hình chữ nhật.
Phương pháp:
Chứng minh tứ giác AHOK có 3 góc vuông nên là hình chữ nhật.
Lời giải:
Vì ABCD là hình chữ nhật nên \(\widehat {BA{\rm{D}}} = {90^o}\) và hai đường chéo AC, BD bằng nhau và cắt nhau tại trung điểm O của mỗi đường.
Suy ra AB ⊥ AD; O là trung điểm của AC và BD.
Vì O, H lần lượt là trung điểm của BD và AB nên OH là đường trung bình của tam giác ABD.
Suy ra OH // AD mà AB ⊥ AD nên OH ⊥ AB hay \(\widehat {AHO} = {90^o}\)
Tương tự, ta chứng minh được: OK ⊥ AD hay \(\widehat {AK{\rm{O}}} = {90^o}\).
Ta có: \(\widehat {BA{\rm{D}}} + \widehat {AHO} + \widehat {AK{\rm{O}}} + \widehat {HOK} = {360^o}\)
90°+90°+90°+\(\widehat {HOK}\)=360°
270°+\(\widehat {HOK}\)=360°
Suy ra \(\widehat {HOK}\)=360°−270°=90°
Tứ giác AHOK có \(\widehat {BA{\rm{D}}}\)=90°;ˆAHO=90°; \(\widehat {AHO}\)=90°;\(\widehat {AK{\rm{O}}}\)=90o
Do đó, tứ giác AHOK là hình chữ nhật.
Giaibaitap.me
Giải bài tập Toán 8 trang 86 Bài 17. Tính chất đường phân giác của tam giác SGK toán 8 tập 1 Kết nối tri thức. Cho tam giác ABC. Đường phân giác trong của góc A cắt BC tại D. Tính độ dài đoạn thẳng DC biết AB = 4,5 m; AC = 7,0 m và CB = 3,5 m (làm tròn kết quả đến hàng phần chục).
Giải bài tập Toán 8 trang 88 Luyện tập chung trong tam giác SGK toán 8 tập 1 Kết nối tri thức. Cho tam giác ABC, phân giác AD (D ∈ BC). Đường thẳng qua D song song với AB cắt AC tại E.
Giải bài tập Toán 8 trang 89 Bài tập cuối chương 4 SGK toán 8 tập 1 Kết nối tri thức. Cho góc xOy. Trên tia Ox, lấy hai điểm A và B sao cho OA = 2 cm, OB = 5 cm. Trên tia Oy, lấy điểm C sao cho OC = 3 cm. Từ điểm B kẻ đường thẳng song song với AC cắt Oy tại D. Tính độ dài đoạn thẳng CD.
Giải bài tập Toán 8 trang 92 Bài 18. Thu thập và phân loại dữ liệu SGK toán 8 tập 1 Kết nối tri thức. Nên sử dụng phương pháp thu nhập nào để thu được mỗi dữ liệu sau?