Bài 84 trang 130 SGK giải tích 12 nâng cao
So sánh p và q, biết:
\(\eqalign{
& a)\,{\left( {{2 \over 3}} \right)^p} > {\left( {{3 \over 2}} \right)^{ - q}} \cr
& c)\,0,{25^p} < {\left( {{1 \over 2}} \right)^{2q}} \cr} \)
\(\eqalign{
& b)\,{\left( {{8 \over 3}} \right)^{ - p}} < {\left( {{3 \over 8}} \right)^q} \cr
& d)\,{\left( {{7 \over 2}} \right)^p} < {\left( {{2 \over 7}} \right)^{p - 2q}} \cr} \)
Giải
\(\eqalign{
& a)\,{\left( {{2 \over 3}} \right)^p} > {\left( {{3 \over 2}} \right)^{ - q}} \Leftrightarrow {\left( {{2 \over 3}} \right)^p} > {\left( {{2 \over 3}} \right)^q}\cr& \Leftrightarrow p < q\,\,\left( {\text{ vì }\,\,\,{2 \over 3} < 1} \right) \cr
& b)\,{\left( {{8 \over 3}} \right)^{ - p}} < {\left( {{3 \over 8}} \right)^q} \Leftrightarrow {\left( {{3 \over 8}} \right)^p} < {\left( {{3 \over 8}} \right)^q} \cr&\Leftrightarrow p > q\,\,\left( {\text{ vì }\,\,{3 \over 8} < 1} \right) \cr
& c)\,\,0,{25^p} < {\left( {{1 \over 2}} \right)^{2q}} \Leftrightarrow {\left( {{1 \over 4}} \right)^p} < {\left( {{1 \over 4}} \right)^q}\cr& \Leftrightarrow \,\,p > q\,\,\left( {\text{ vì }\,\,{1 \over 4} < 1} \right) \cr
& d)\,\,{\left( {{7 \over 2}} \right)^p} < {\left( {{2 \over 7}} \right)^{p - 2q}} \Leftrightarrow {\left( {{7 \over 2}} \right)^p} < {\left( {{7 \over 2}} \right)^{2q - p}} \cr&\Leftrightarrow p < 2q - p\,\,\left( {\text{ vì }\,\,{7 \over 2} > 1} \right) \cr
& \Leftrightarrow 2p < 2q \Leftrightarrow p < q \cr} \)
Bài 85 trang 130 SGK giải tích 12 nâng cao
Cho \(x < 0\). Chứng minh rằng: \(\sqrt {{{ - 1 + \sqrt {1 + {1 \over 4}{{\left( {{2^x} - {2^{ - x}}} \right)}^2}} } \over {1 + \sqrt {1 + {1 \over 4}{{\left( {{2^x} - {2^{ - x}}} \right)}^2}} }}} = {{1 - {2^x}} \over {1 + {2^x}}}\)
Giải
Ta có: \(1 + {1 \over 4}{\left( {{2^x} - {2^{ - x}}} \right)^2} = {1 \over 4}\left( {4 + {4^x} - 2 + {4^{ - x}}} \right) \)
\(= {1 \over 4}\left( {{4^x} + 2 + {4^{ - x}}} \right) = {1 \over 4}{\left( {{2^x} + {2^{ - x}}} \right)^2}\)
Do đó:
\(\eqalign{
& \sqrt {{{ - 1 + \sqrt {1 + {1 \over 4}{{\left( {{2^x} - {2^{ - x}}} \right)}^2}} } \over {1 + \sqrt {1 + {1 \over 4}{{\left( {{2^x} - {2^{ - x}}} \right)}^2}} }}} \cr&= \sqrt {{{ - 1 + {1 \over 2}\left( {{2^x} + {2^{ - x}}} \right)} \over {1 + {1 \over 2}\left( {{2^x} + {2^{ - x}}} \right)}}} = \sqrt {{{{2^x} - 2 + {2^{ - x}}} \over {{2^x} + 2 + {2^{ - x}}}}} \cr
& = \sqrt {{{{2^x} - 2 + {1 \over {{2^x}}}} \over {{2^x} + 2 + {1 \over {{2^x}}}}}} = \sqrt {{{{4^x} - {{2.2}^x} + 1} \over {{4^x} + {{2.2}^x} + 1}}}\cr& = \sqrt {{{{{\left( {{2^x} - 1} \right)}^2}} \over {{{\left( {{2^x} + 1} \right)}^2}}}} = {{1 - {2^x}} \over {1 + {2^x}}} \cr} \)
(vì với \(x < 0\) thì \({2^x} < 1\))
Bài 86 trang 130 SGK giải tích 12 nâng cao
Tính:
\(a)\,A = {9^{2{{\log }_3}4 + 4{{\log }_{81}}2}}\)
\(b)\,B = {\log _a}\left( {{{{a^2}.\root 3 \of a .\root 5 \of {{a^4}} } \over {\root 4 \of a }}} \right)\)
\(c)\,\,C = {\log _5}{\log _5}\root 5 \of {\root 5 \of {\root 5 \of {....\root 5 \of 5 } } } \)
Giải
a) Áp dụng \({\log _{{a^\alpha }}}{b^\beta } = {\beta \over \alpha }{\log _a}b\) (với \(a > 0, b>0\) và \(a \ne 1\)) và \({a^{{{\log }_a}b}} = b\)
Ta có:
\(\eqalign{
& 2{\log _3}4 + 4{\log _{81}}2 = {4 \over 2}{\log _3}4 + 2{\log _9}2 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\log _9}{4^4} + {\log _9}{2^2} = {\log _9}{2^{10}} \cr} \)
Do đó \(A = {9^{{{\log }_9}{2^{10}}}} = {2^{10}} = 1024\)
b) Ta có \({{{a^2}.\root 3 \of a .\root 5 \of {{a^4}} } \over {\root 4 \of a }} = {a^{2 + {1 \over 3} + {4 \over 5} - {1 \over 4}}} = {a^{{{173} \over {60}}}}\)
Do đó: \(B = {\log _a}{a^{{{173} \over {60}}}} = {{173} \over {60}}\)
c) Ta có \(\root 5 \of {\root 5 \of {\root 5 \of {....\root 5 \of 5 } } } = {5^{{{\left( {{1 \over 5}} \right)}^n}}} \Rightarrow {\log _5}\root 5 \of {\root 5 \of {\root 5 \of {....\root 5 \of 5 } } } \)
\(= {\left( {{1 \over 5}} \right)^n} = {5^{ - n}}\)
\( \Rightarrow C = - n\)
Bài 87 trang 130 SGK giải tích 12 nâng cao
Chứng minh rằng \({\log _2}3 > {\log _3}4\)
Giải
Ta có \({\log _2}3 > {\log _3}4 \Leftrightarrow {1 \over {{{\log }_3}2}} > {\log _3}4 \Leftrightarrow {\log _3}2.{\log _3}4 < 1\) (vì \({\log _3}2 > 0\))
Áp dụng BĐT cô si cho hai số dương ta có:
\(\eqalign{
& \sqrt {{{\log }_3}2.{{\log }_3}4} < {1 \over 2}\left( {{{\log }_3}2 + {{\log }_3}4} \right) = {1 \over 2}{\log _3}8 \cr
&{1 \over 2}{\log _3}8 < {1 \over 2}{\log _3}9 = 1 \Rightarrow {\log _3}2.{\log _3}4 < 1\,\,\left( {dpcm} \right) \cr} \)
Giaibaitap.me
Giải bài tập trang 132 ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit SGK Giải tích 12 Nâng cao. Câu 95: Giải phương trình...
Giải bài tập trang 130, 131 ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit SGK Giải tích 12 Nâng cao. Câu 88: Gọi c là cạnh huyền, a và b là hai cạnh góc vuông của một tam giác vuông. Chứng minh rằng...
Giải bài tập trang 131 ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit SGK Giải tích 12 Nâng cao. Câu 92: Các loài cây xanh trong quá trình quang hợp sẽ nhận được một lượng cacbon 14 (một đồng vị của cacbon)....
Giải bài tập trang 132, 133, 134 ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit SGK Giải tích 12 Nâng cao. Câu 98: Giá trị biểu thức ...