Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
5 trên 1 phiếu

Giải bài tập Toán 12 Nâng cao

CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

Giải bài tập trang 97 bài 4 số e và lôgarit tự nhiên SGK Giải tích 12 Nâng cao. Câu 45: Hỏi sau 10 giờ có bao nhiêu con vi khuẩn? Sau bao lâu số lượng vi khuẩn ban đầu sẽ tăng gấp đôi?...

Bài 45 trang 97 SGK Đại số và Giải tích 12 Nâng cao

Sự tăng trưởng của một loại vi khuẩn tuân theo công thức \(S = A.{e^{rt}}\), trong đó A là số lượng vi khuẩn ban đầu, r là ti lệ tăng trưởng (r > 0), t là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là 100 con và sau 5 giờ có 300 con. Hỏi sau 10 giờ có bao nhiêu con vi khuẩn? Sau bao lâu số lượng vi khuẩn ban đầu sẽ tăng gấp đôi?

Giải

Trước tiên, ta tìm tỉ lệ tăng trưởng mỗi giờ của loài vi khuẩn này. Từ giả thiết \(S = A.{e^{rt}}\) suy ra
\(r = {1 \over 5}\left( {\ln {{300} \over {100}}} \right) = {{\ln 300 - \ln 100} \over 5}\)

\(r = {{\ln 300 - \ln 100} \over 5} = {{\ln 3} \over 5} \approx 0,2197\)
Tức là tỉ lệ tăng trưởng của loại vi khuẩn này là 21,97% mỗi giờ.
Sau 10 giờ, từ 100 con vi khuẩn sẽ có: \(100.{e^{10.0,2197}} \approx 900\)(con).
Từ 100 con, để có 200 con thì thời gian cần thiết là
\(t = {1 \over r}\ln {S \over A} = {{\ln S - \ln A} \over r}\)
\(t \approx {{\ln 200 - \ln 100} \over {0,2197}} = {{\ln 2} \over {0,2197}} \approx 3,15\) (giờ) = 3 giờ 9 phút.

Bài 46 trang 97 SGK Đại số và Giải tích 12 Nâng cao

Cho biết chu kì bán hủy của chất phóng xạ Plutôni \(P{u^{239}}\) là 24360 năm (tức là một lượng \(P{u^{239}}\) sau 24360 năm phân hủy chỉ còn lại một nửa). Sự phân hủy được tính theo công thức \(S = A.{e^{rt}}\), trong đó A là lượng chất phóng xạ ban đầu, r là tỉ lệ phân hủy hàng năm (r < 0), t là thời gian phân hủy, S là lượng còn lại sau thời gian phân hủy t. Hỏi 10 gam \(P{u^{239}}\) sau bao nhiêu năm phân hủy sẽ còn 1 gam?

Giải

Trước tiên, ta tìm tỉ lệ phân hủy hàng năm của \(P{u^{239}}\).
\(P{u^{239}}\) có chu kì bán hủy là 24360 năm , do đó ta có:

\(5 = 10.{e^{r.24360}}\).
Suy ra:

\(r = {{\ln 5 - \ln 10} \over {24360}} \approx  - 2,{84543.10^{ - 5}} \approx  - 0,000028\)

Vậy sự phân hủy của \(P{u^{239}}\) được tính theo công thức: \(S = A.{e^{ - 0,000028t}}\)
Trong đó S và A tính bằng gam, t tính bằng năm.
Theo bài ra, ta có: \(1 = 10.{e^{ - 0,000028t}}\)
Suy ra: \(t = {{ - \ln 10} \over { - 0,000028}} \approx 82235\) (năm).
Vậy sau khoảng 82235 năm thì 10 gam chất \(P{u^{239}}\) sẽ phân hủy còn 1 gam.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác