Trang chủ
Loigiaihay.com 2024

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 12 Nâng cao

CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

Giải bải tập trang 63 ôn tập chương II - Mặt cầu, mặt trụ, mặt nón SGK Hình học 12 Nâng cao. Câu 1: Mặt trụ là hình tròn xoay sinh bởi đường thẳng l khi quay quanh đường thẳng ...

Bài 1 trang 63 SGK Hình học 12 Nâng cao

Cho mp  \((P)\) và điểm \(A\) không thuộc \((P)\). Chứng minh rằng mọi mặt cầu đi qua \(A\) và có tâm nằm trên \((P)\) luôn luôn đi qua hai điểm cố định.

Giải


Lấy điểm \(O\) nằm trên mp \((P)\). Gọi \((S)\) là mặt cầu đi qua \(A\) có tâm \(O\).

Gọi \(A’\) là điểm đối xứng của \(A\) qua mp \((P)\) ta có \(OA’ = OA = R\) nên \((S)\) đi qua \(A’\). Vậy mặt cầu \((S)\) luôn đi qua hai điểm cố định \(A\) và \(A’\).

Bài 2 trang 63 SGK Hình học 12 Nâng cao

Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\), biết \(SA = SB = SC = a\), \(\widehat {ASB} = {60^0},\widehat {BSC} = {90^0},\widehat {CSA} = {120^0}\).

Giải


Áp dụng định lí Cosin trong tam giác \(SAB, SAC\) ta có:

\(\eqalign{
& A{B^2} = S{A^2} + S{B^2} - 2SA.SB.\cos {60^0} \cr 
& = {a^2} + {a^2} - 2{a^2}.{1 \over 2} = {a^2} \Rightarrow AB = a \cr 
& A{C^2} = S{A^2} + S{C^2} - 2SA.SC.\cos {120^0} \cr 
& = {a^2} + {a^2} - 2{a^2}\left( { - {1 \over 2}} \right) = 3{a^2} \Rightarrow AC = a\sqrt 3 \cr} \)

Trong tam giác vuông \(SBC\) có: \(B{C^2} = S{B^2} + S{C^2} = 2{a^2} \Rightarrow BC = a\sqrt 2 \)

Ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow \Delta ABC\) vuông tại \(B\).

Gọi \(H\) là trung điểm của \(AC\) thì \(H\) là tâm đường tròn ngoại tiếp tam giác ABC.

Vì \(SA = SB = SC\) nên \(SH \bot mp\left( {ABC} \right)\)

Và \(S{H^2} = S{C^2} - H{C^2} = {a^2} - {\left( {{{a\sqrt 3 } \over 2}} \right)^2} = {{{a^2}} \over 4} \)

\(\Rightarrow SH = {a \over 2}\)

Gọi \(O\) là điểm đối xứng của \(S\) qua \(H\) thì \(SO = OA = OB = OC = a\) nên mặt cầu ngoại tiếp hình chóp \(S.ABC\) có tâm \(O\) và bán kính \(R = a\).

Bài 3 trang 63 SGK Hình học 12 Nâng cao

Cho hai đường tròn \((O; r)\) và \((O’; r’)\) cắt nhau tại hai điểm \(A, B\) và lần lượt nằm trên hai mặt phẳng phân biệt \((P)\) và \((P’)\).

a) Chứng minh rằng có mặt cầu \((S)\) đi qua hai đường tròn đó.

b) Tìm bán kính \(R\) của mặt cầu \((S)\) khi \(r = 5, r' = \sqrt {10} \), \(AB = 6\), \({\rm{OO}}' = \sqrt {21} \).

Giải



a) Gọi \(M\) là trung điểm của \(AB\) ta có: \(OM \bot AB\) và \(O'M \bot AB \Rightarrow AB \bot \left( {OO'M} \right)\)

Gọi \(\Delta ,\,\Delta '\) lần lượt là trục của đường tròn \((O; r)\) và \((O’; r’)\) thì \(AB \bot \Delta \,\,,\,\,AB \bot \Delta '\). Do đó \(\Delta ,\,\Delta '\) cùng nằm trong mp \((OO’M)\).

Gọi \(I\) là giao điểm của \(\Delta \) và \(\Delta '\) thì \(I\) là tâm của mặt cầu \((S)\) đi qua hai đường tròn \((O; r)\) và \((O’; r’)\) và \(S\) có bán kính \(R = IA\).

b) Ta có: \(MA = MB = 3\,\,,\,\,OA = r = 5,\,\,OA' = r' = \sqrt {10} \)

\(\eqalign{
& OM = \sqrt {O{A^2} - A{M^2}} = \sqrt {25 - 9} = 4 \cr 
& O'M = \sqrt {O'{A^2} - A{M^2}} = \sqrt {10 - 9} = 1 \cr} \)

Áp dụng định lí Cosin trong \(\Delta {\rm{OMO'}}\) ta có:

\(\eqalign{
& OO{'^2} = O{M^2} + O'{M^2} - 2OM.O'M.\cos \widehat {OMO'} \cr 
& \Rightarrow 21 = 16 + 1 - 2.4.1.cos\widehat {OMO'} \cr&\Rightarrow \cos \widehat {OMO'} = - {1 \over 2} \cr 
& \Rightarrow \widehat {OMO'} = {120^0},\,\,\widehat {OIO'} = {60^0} \cr} \)

Áp dụng định lí Côsin trong tam giác \(OMO’\) ta có:

\(\eqalign{
& M{O^2} = MO{'^2} + OO{'^2} - 2MO'.OO'.cos\widehat {MO'O} \cr 
& \Rightarrow \cos \widehat {MO'O} = {{\sqrt {21} } \over 7} \Rightarrow \sin \widehat {OO'I} = {{\sqrt {21} } \over 7} \cr} \)

(Vì \(\widehat {MO'O} + \widehat {OO'I} = {90^0}\))

Áp dụng định lí Cosin trong tam giác \(OIO’\) ta có: 
\({{OI} \over {\sin \widehat {OO'I}}} = {{OO'} \over {\sin \widehat {OIO'}}} \Leftrightarrow {{OI} \over {{{\sqrt {21} } \over 7}}} = {{\sqrt {21} } \over {{{\sqrt 3 } \over 2}}} \Leftrightarrow OI = 2\sqrt 3 \)

Vậy \(R = \sqrt {O{A^2} + O{I^2}}  = \sqrt {25  + 12} = \sqrt {37} \)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác