Trang chủ
Bình chọn:
5 trên 1 phiếu

Giải bài tập Toán 12 Nâng cao

CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

Giải bài tập trang 7 bài 1 khái niệm về khối đa diện SGK Hình học 12 Nâng cao. Câu 1: Chứng minh rằng nếu khối đa diện có các mặt là tam giác thì số mặt phải là số chẵn. Hãy chỉ ra những khối đa diện như thế với số mặt bằng 4, 6, 8, 10.

Bài 1 trang 7 SGK Hình học 12 Nâng cao

Chứng minh rằng nếu khối đa diện có các mặt là tam giác thì số mặt phải là số chẵn. Hãy chỉ ra những khối đa diện như thế với số mặt bằng \(4, 6, 8, 10\).

Giải

Gọi số cạnh của khối đa diện là \(C\), số mặt là \(M\). Vì mỗi mặt có ba cạnh và mỗi cạnh lại chung cho hai mặt bên nên \(3M = 2C\). Suy ra \(M\) là số chẵn.

Sau đây là một số khối đa diện có các mặt là tam giác.


Bài 2 trang 7 SGK Hình học 12 Nâng cao

Chứng minh rằng nếu khối đa diện có mỗi đỉnh là đỉnh chung của ba cạnh thì số đỉnh phải là số chẵn.

Giải

Gọi số cạnh của khối đa diện là \(C\), số đỉnh là \(Đ\). Vì mỗi đỉnh là đỉnh chung của ba cạnh và mỗi cạnh có \(2\) đỉnh nên \(3Đ = 2C\) do đó \(Đ\) là sỗ chẵn. 


Bài 3 trang 7 SGK Hình học 12 Nâng cao

Chứng minh rằng nếu khối đa diện có các mặt là tam giác và mỗi đỉnh là đỉnh chung của ba cạnh thì đó là khối tứ diện.

Giải

 

Gọi \(A\) là một đỉnh của khối tứ diện. Theo giả thiết đỉnh \(A\) là đỉnh chung của \(3\) cạnh, ta gọi \(3\) cạnh đó là \(AB, AC, AD\). Cạnh \(AB\) phải là cạnh chung của hai mặt tam giác, đó là hai mặt \(ABC\) và \(ABD\) (Vì qua đỉnh \(A\) chỉ có \(3\) cạnh). Tương tự, ta có các mặt tam giác \(ACD\) và \(BCD\). Vậy khối đa diện đó chính là khối tứ diện \(ABCD\).


Bài 4 trang 7 Hình học 12 Nâng cao

Hãy phân chia một khối hộp thành năm khối tứ diện.

Giải

 

Có thể phân chia khối hộp \(ABCD.A’B’C’D’\) thành năm khối tứ diện \(ABDA’ ; CBDC’ ; B’A’C’B ; D’A’C’D ; BDA’C’.\)


Bài 5 trang 7 SGK Hình học 12 Nâng cao

Hãy phân chia một khối tứ diện thành bốn khối tứ diện bởi hai mặt phẳng.

Giải

Cho khối tứ diện \(ABCD\). Lấy điểm \(M\) nằm giữa \(A\) và \(B\), điểm \(N\) nằm giữa \(C\) và \(D\). Bằng hai mặt phẳng \((MCD)\) và \((NAB)\) ta chia khối tứ diện đã cho thành \(4\) khối tứ diện: \(AMCN ; AMND ; BMCN ; BMND\).

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

  • Giải bài 6, 7, 8, 9, 10 trang 15 SGK Hình học 12 Nâng cao

    Giải bài tập trang 15 bài 2 phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện SGK Hình học 12 Nâng cao. Câu 6: Gọi Đ là phép đối xứng qua mặt phẳng (P) và a là một đường thẳng nào đó...

  • Giải bài 11, 12, 13, 14 trang 20 SGK Hình học 12 Nâng cao

    Giải bài tập trang 20 bài 3 phép vị tự và sự đồng dạng của các khối đa diện, các khối đa diện đều SGK Hình học 12 Nâng cao. Câu 11: Chứng minh rằng phép vị tự biến mỗi đường thẳng thành một đường thẳng song song...

  • Giải bài 20, 21, 22 trang 28 SGK Hình học 12 Nâng cao

    Giải bài tập trang 28 bài 4 thể tích của khối đa diện SGK Hình học 12 Nâng cao. Câu 20: Tính tổng diện tích các mặt bên của hình lăng trụ \(ABC.A'B'C\) (tổng đó gọi là diện tích xung quanh của hình (hoặc khối) lăng trụ đã cho)....

  • Giải bài 23, 24, 25 trang 29 SGK Hình học 12 Nâng cao

    Giải bài tập trang 29 bài 4 thể tích của khối đa diện SGK Hình học 12 Nâng cao. Câu 23: Cho khối chóp tam giác \(S.ABC\). Trên ba đường thẳng \(SA, SB,SC\) lần lượt lấy ba điểm...