Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.8 trên 4 phiếu

Giải bài tập Toán 10 Nâng cao

CHƯƠNG IV. BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH

Giải bài tập trang 156 bài ôn tập chương 4 bất đẳng thức và bất phương trình SGK Đại số 10 nâng cao. Câu 84: Giải các phương trình sau...

Bài 84 trang 156 SGK Đại số 10 nâng cao

Giải các phương trình sau

a) \(|x^2– 2x – 3| = 2x + 2\)

b) \(\sqrt {{x^2} - 4}  = 2(x - \sqrt 3 )\)

Đáp án

a) Điều kiện: \(x ≥  -1\). Ta có:

\(\eqalign{
& \left| {{x^2}-2x-3} \right| = 2x + {\rm{ }}2\cr& \Leftrightarrow \left[ \matrix{
{x^2}-2x-3 = 2x + 2 \hfill \cr
{x^2}-2x-3 = - 2x - 2 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
{x^2} - 4x - 5 = 0 \hfill \cr
{x^2} - 1 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = - 1;\,x = 5 \hfill \cr
x = \pm 1 \hfill \cr} \right. (\text{nhận})\cr} \)

Vậy S = {-1, 1, 5}

b) Ta có:

\(\sqrt {{x^2} - 4} = 2(x - \sqrt 3 )\)

\(\Leftrightarrow \left\{ \matrix{
x \ge \sqrt 3 \hfill \cr
{x^2} - 4 = 4({x^2} - 2\sqrt 3 + 3) \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x \ge \sqrt 3 \hfill \cr
3{x^2} - 8\sqrt 3 + 16 = 0 \hfill \cr} \right.\) 

Vậy \(S = {\rm{\{ }}{{4\sqrt 3 } \over 3}{\rm{\} }}\)

 


Bài 85 trang 156 SGK Đại số 10 nâng cao

Giải các bất phương trình sau:

a) \(\sqrt {{x^2} - 4x - 12}  \le x - 4\)

b) \((x - 2)\sqrt {{x^2} + 4}  \le {x^2} - 4\)

c) \(\sqrt {{x^2} - 8x}  \ge 2(x + 1)\)

d) \(\sqrt {x(x + 3)}  \le 6 - {x^2} - 3x\)

Đáp án

a) Ta có:

\(\eqalign{
& \sqrt {{x^2} - 4x - 12} \le x - 4 \cr&\Leftrightarrow \left\{ \matrix{
{x^2} - 4x - 12 \ge 0 \hfill \cr
x - 4 \le 0 \hfill \cr
{x^2} - 4x - 12 \le {(x - 4)^2} \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x \le - 2 \hfill \cr
x \ge 6 \hfill \cr} \right. \hfill \cr
x \ge 4 \hfill \cr
4x \le 28 \hfill \cr} \right. \Leftrightarrow 6 \le x \le 7 \cr} \)

Vậy \(S = [6, 7]\)

b) Ta có:

\((x - 2)\sqrt {{x^2} + 4}  \le {x^2} - 4\)

\(\Leftrightarrow (x - 2)(\sqrt {{x^2} + 4}  - x - 2) \le 0\)

 + Với x = 2 là nghiệm của bất phương trình

+ Với x > 2, ta có:

\((x - 2)\sqrt {{x^2} + 4}  \le {x^2} - 4 \)

\(\Leftrightarrow {x^2} + 4 \le {(x + 2)^2} \Leftrightarrow x \ge 0\)

Kết hợp với điều kiện, ta có: x > 2.

+ Với x < 2, ta có:

\(\eqalign{
& (x - 2)\sqrt {{x^2} + 4} \le {x^2} - 4 \cr&\Leftrightarrow \left[ \matrix{
x + 2 > 0 \hfill \cr
\left\{ \matrix{
x + 2 \ge 0 \hfill \cr
{x^2} + 4 \ge {(x + 2)^2} \hfill \cr} \right. \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x < - 2 \hfill \cr
\left\{ \matrix{
x \ge - 2 \hfill \cr
x \le 0 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x \le 0 \cr} \)

Vậy \(S = (-∞, 0] ∪ [2, +∞)\)

c) Bất phương trình đã cho tương đương với:

\((I) \Leftrightarrow \left\{ \matrix{
{x^2} - 8x \ge 0 \hfill \cr
x + 1 < 0 \hfill \cr} \right.\)

hoặc

\((II) \Leftrightarrow \left\{ \matrix{
x + 1 \ge 0 \hfill \cr
{x^2} - 8x \ge 4{(x + 1)^2} \hfill \cr} \right.\) 

Ta có:

\(\eqalign{
& (I) \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x \le 0 \hfill \cr
x \ge 8 \hfill \cr} \right. \hfill \cr
x < - 1 \hfill \cr} \right. \Leftrightarrow x < - 1 \cr
& (II)\, \Leftrightarrow \left\{ \matrix{
x \ge - 1 \hfill \cr
3{x^2} + 16x + 4 \le 0 \hfill \cr} \right.\cr& \Leftrightarrow \left\{ \matrix{
x \ge - 1 \hfill \cr
{{ - 8 - 2\sqrt {13} } \over 3} \le x \le {{ - 8 + 2\sqrt {13} } \over 3} \hfill \cr} \right. \cr&\Leftrightarrow - 1 \le x \le {{ - 8 + 2\sqrt {13} } \over 3} \cr} \)

Tập nghiệm của bất phương trình đã cho là:

\(S = ( - \infty , - 1) \cup {\rm{[}} - 1,\,{{2\sqrt {13}  - 8} \over 3}{\rm{]}} = ( - \infty ,{{2\sqrt {13}  - 8} \over 3}{\rm{]}}\) 

d) Đặt \(t = \sqrt {x(x + 3)} \,\,\,(t \ge 0)\)

⇒ x2 + 3x = t2 ⇔ t2 + t - 6 ≤ 0 ⇔  -3 ≤ t ≤ 2

Kết hợp với điều kiện: 0 ≤ t ≤ 2  ⇔  0 ≤ x2 + 3x ≤ 4

\( \Leftrightarrow \left\{ \matrix{
{x^2} + 3x \ge 0 \hfill \cr
{x^2} + 3x - 4 \le 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x \le - 3 \hfill \cr
x \ge 0 \hfill \cr} \right. \hfill \cr
- 4 \le x \le 1 \hfill \cr} \right. \)

\(\Leftrightarrow \left[ \matrix{
- 4 \le x \le -3 \hfill \cr
0 \le x \le 1 \hfill \cr} \right.\)

Vậy \(S  = [-4, -3] ∪ [0, 1]\)

 


Bài 86 trang 156 SGK Đại số 10 nâng cao

 Với giá trị nào của a, các hệ phương trình sau có nghiệm

a) 

\(\left\{ \matrix{
{x^2} - 5x + 6 < 0 \hfill \cr
ax + 4 < 0 \hfill \cr} \right.\)

b)

\(\left\{ \matrix{
4x + 1 < 7x - 2 \hfill \cr
{x^2} - 2ax + 1 \le 0 \hfill \cr} \right.\)

Đáp án

a) Bất phương trình đầu của hệ có nghiệm là 2 < x < 3

Bất phương trình thứ hai của hệ tương đương với bất phương trình: ax < -4

+ Nếu a = 0 thì bất phương trình này vô nghiệm. Do đó, hệ vô nghiệm.

+ Nếu a > 0 thì nghiệm của phương trình là \(x <  - {4 \over a}\)

Vì \( - {4 \over a} < 0\) nên hệ vô nghiệm.

+ Nếu a < 0 thì nghiệm của bất phương trình này là \(x >  - {4 \over a}\)

Hệ có nghiệm khi và chỉ khi: 

\(\left\{ \matrix{
a < 0 \hfill \cr
- {4 \over a} < 3 \hfill \cr} \right. \Leftrightarrow a < - {4 \over 3}\)

Vậy hệ có nghiệm khi và chỉ khi: \(a <  - {4 \over a}\)

b) Bất phương trình đầu của hệ có nghiệm là x > 1

Xét bất phương trình thứ hai của hệ:

Ta có: Δ’= a2 – 1

Nếu Δ’= 0 ⇔ a = ± 1

+ Với a = 1, nghiệm của bất phương trình là x = 1

Do đó, hệ vô nghiệm.

+ Với a = -1, nghiệm của bất phương trình là x = -1

Nếu Δ’ < 0 hay -1 < a < 1 thì bất phương trình này vô nghiêm.

Do đó, hệ vô nghiệm.

Nếu Δ’ > 0 hay a < -1 hoặc a > 1 thì tam thức ở vế trái của bất phương trình có hai nghiệm phân biệt x1, x2.

Nghiệm của bất phương trình này là: x1 ≤ 1  ≤ x2  (giả sử x1 < x2)

Theo định lý Vi-ét, ta có: x1x2 = 1 và x1 + x2 = 2a

+ Nếu a < -1 thì cả hai nghiệm x1 và  x2 đều âm. Do đó, hệ đã cho vô nghiệm.

+ Nếu a > 1 thì hai nghiệm x1 và x2 đều dương. Ngoài ra vì x1x2 = 1 và x1 ≠ x2 nên x1 < 1 < x2.

Do đó, hệ có nghiệm.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác