Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 10 Nâng cao

CHƯƠNG III. PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH

Giải bài tập trang 101 bài ôn tập chương 3 phương trình và hệ phương trình SGK Đại số 10 nâng cao. Câu 54: Giải và biện luận phương trình...

Bài 54 trang 101 SGK Đại số 10 nâng cao

Giải và biện luận phương trình: \(m(mx – 1) = x + 1\)

Giải

Ta có:

\(m(mx – 1) = x + 1  ⇔ (m^2– 1)x = m + 1\)

+ Nếu \(m ≠ ± 1\) thì phương trình có nghiệm:

\(x = {{m + 1} \over {{m^2} - 1}} = {1 \over {m - 1}};\,\,\,S = {\rm{\{ }}{1 \over {m - 1}}{\rm{\} }}\)

+ Nếu \(m = 1\) thì (1) thành \(0x = 2; S = Ø\)

+ Nếu \(m = -1\) thì (1) thành \(0x = 0; S =\mathbb R\)


Bài 55 trang 101 SGK Đại số 10 nâng cao

Cho phương trình \(p(x + 1) - 2x = {p^2} + p - 4\). Tìm các giá trị của p để:

a) Phương trình nhận 1 làm nghiệm;

b) Phương trình có nghiệm;

c) Phương trình vô nghiệm.

Giải

a) \(x = 1\) là nghiệm phương trình:

\(\eqalign{
& \Leftrightarrow 2p - 2 = {p^2} + p - 4 \Leftrightarrow {p^2} - p - 2 = 0 \cr
& \Leftrightarrow \left[ \matrix{
p = - 1 \hfill \cr
p = 2 \hfill \cr} \right. \cr} \) 

b) Ta có: \(p(x + 1) – 2x ={p^2}+ p – 4 ⇔ (p – 2)x ={p^2}– 4\)

+ Nếu \(p ≠ 2\): phương trình có nghiệm \(x = p + 2\)

+ Nếu \(p = 2\): phương trình có vô số nghiệm

Vậy với mọi p, phương trình luôn có nghiệm

c) Theo b) ta thấy: không có p nào thỏa mãn để phương trình vô nghiệm.

 


Bài 56 trang 101 SGK Đại số 10 nâng cao

Ba cạnh của một tam giác vuông có độ dài là 3 số tự nhiên liên tiếp. Tính độ dài của chúng.

Giải

Gọi độ dài ngắn nhất là x ( điều kiện x nguyên dương)

Theo giả thiết, độ dài của hai cạnh kia là x + 1 và x + 2, trong đó cạnh huyền dài x + 2

Theo định lý Py-ta-go, ta có phương trình:

\({x^2} + {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}1} \right)^2} = {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}\)

Phương trình này tương đương với:

\({x^2} - 2x - 3 = 0 \Leftrightarrow \left[ \matrix{
x = - 1\,\,\,(\text{loại}) \hfill \cr
x = 3\,\,\,\,\,\,(\text{thỏa mãn} )\hfill \cr} \right.\) 

Vậy độ dài của các cạnh của tam giác vuông là 3, 4 và 5.

 


Bài 57 trang 101 SGK Đại số 10 nâng cao

Cho phương trình \((m - 1)x^2+ 2x - 1 = 0\)

a) Giải và biện luận phương trình.

b) Tìm các giá trị của m sao cho phương trình có hai nghiệm khác dấu.

c) Tìm các giá trị của m sao cho tổng bình phương hai nghiệm của nó bằng 1.

Giải

a) Với \(m = -1\), phương trình có nghiệm là \(x = {1 \over 2}\)

Với \(m ≠ 1\), ta có: \(Δ’ = 1 + m – 1 = m\)

Với m < 0, S = Ø

Với m = 0; S = {1}

Với m > 0; \(S = {\rm{\{ }}{{ - 1 - \sqrt m } \over {m - 1}};\,{{ - 1 + \sqrt m } \over {m - 1}}{\rm{\} }}\)

b) Phương trình có hai nghiệm trái dấu: \( \Leftrightarrow P < 0 \Leftrightarrow  - {1 \over {m - 1}} < 0 \Leftrightarrow m > 1\)

c) Điều kiện để phương trình có hai nghiệm: \(1 ≠ m > 0\)

Theo định lý Vi-ét:

\(\left\{ \matrix{
{x_1} + {x_2} = - {2 \over {m - 1}} \hfill \cr
{x_1}{x_2} = - {1 \over {m - 1}} \hfill \cr} \right.\)

Ta có:

\(\eqalign{
& x_1^2 + x_2^2 = 1 \Leftrightarrow {({x_1} + {x_2})^2} - 2{x_1}{x_2} = 1 \cr
& \Leftrightarrow {4 \over {{{(m - 1)}^2}}} + {2 \over {m - 1}} = 1\cr& \Leftrightarrow 4 + 2(m - 1) = {(m - 1)^2} \cr
& \Leftrightarrow {m^2} - 4m - 1 = 0\cr& \Leftrightarrow \left[ \matrix{
m = 2 - \sqrt 5 \,\,\,\,(\text{loại}) \hfill \cr
m = 2 + \sqrt 5 \,\,\,\,,(\text{thỏa mãn}) \hfill \cr} \right. \cr} \)

Giaibaitap.me

 

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác