Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Toán 10 Nâng cao

ÔN TẬP CUỐI NĂM ĐẠI SỐ - TOÁN 10 NÂNG CAO

Giải bài tập trang 222, 223 bài ôn tập cuối năm SGK Đại số 10 Nâng cao. Câu 17: Giải các phương trình...

Bài 17 trang 222 SGK Đại số 10 Nâng cao

Giải các phương trình

a) \(\sqrt {2x + 8}  = 3x + 4\)

b) |x2 + 5x + 6| = 3x + 13

c) (x2 + 3x)(x2 + 3x + 4) = 5

Đáp án

a) Ta có:

\(\eqalign{
& \sqrt {2x + 8} = 3x + 4 \Leftrightarrow \left\{ \matrix{
3x + 4 \ge 0 \hfill \cr
2x + 8 = {(3x + 4)^2} \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
x \ge - {4 \over 3} \hfill \cr
9{x^2} + 22x - 8 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x \ge - {4 \over 3} \hfill \cr
\left[ \matrix{
x = 2\;(\text{ loại}) \hfill \cr
x = - {4 \over 3} \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x = - {4 \over 9} \cr} \) 

Vậy \(S = {\rm{\{ }} - {4 \over 9}{\rm{\} }}\)

b) Điều kiện: \(3x + 13 \ge 0 \Leftrightarrow x \ge  - {{13} \over 3}\)

Ta có:

\(\eqalign{
& |{x^2} + 5x + 6| = 3x + 13 \cr&\Leftrightarrow \left[ \matrix{
{x^2} + 5x + 6 = 3x + 13 \hfill \cr
{x^2} + 5x + 6 = - (3x + 13) \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
{x^2} + 2x - 7 = 0 \hfill \cr
{x^2} + 8x + 19 = 0 \hfill \cr} \right. \Leftrightarrow x = - 1 \pm 2\sqrt 2 \cr} \) 

Vậy \(S = {\rm{\{ }} - 1 - 2\sqrt 2 ;\, - 1 + 2\sqrt 2 {\rm{\} }}\)

c) Đặt t = x2+ 3x, ta có phương trình:

\(\eqalign{
& t(t + 4) = 5 \Leftrightarrow {t^2} + 4t - 5 = 0 \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = - 5 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
{x^2} + 3x - 1 = 0 \hfill \cr
{x^2} + 3x + 5 = 0 \hfill \cr} \right. \Leftrightarrow x = {{ - 3 \pm \sqrt {13} } \over 2} \cr} \)

Vậy \(S = {\rm{\{ }}{{ - 3 \pm \sqrt {13} } \over 2}{\rm{\} }}\)

 


Bài 18 trang 223 SGK Đại số 10 Nâng cao

Giải các bất phương trình

a) 3x2 - |5x + 2| >0

b) \(\sqrt {2{x^2} + 7x + 5}  > x + 1\)

c) \(\sqrt {{x^2} + 4x - 5}  \le x + 3\)

Đáp án

a) Ta có:

\(\eqalign{
& 3{x^2} - \left| {5x + 2} \right| > 0 \Leftrightarrow |5x + 2| < 3{x^2} \cr
& \Leftrightarrow - 3{x^2} < 5x + 2 < 3{x^2} \cr
& \Leftrightarrow \left\{ \matrix{
3{x^2} + 5x + 2 > 0 \hfill \cr
3{x^2} - 5x - 2 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x < - 1 \hfill \cr
x > - {2 \over 3} \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
x < - {1 \over 3} \hfill \cr
x > 2 \hfill \cr} \right. \hfill \cr} \right. \cr&\Leftrightarrow \left[ \matrix{
x < - 1 \hfill \cr
- {2 \over 3} < x < - {1 \over 3} \hfill \cr
x > 2 \hfill \cr} \right. \cr} \)

Vậy: \(S = ( - \infty ,\, - 1) \cup ( - {2 \over 3}; - {1 \over 3}) \cup (2, + \infty )\)

b) Ta có:

\(\eqalign{
& \sqrt {2{x^2} + 7x + 5} > x + 1 \cr
& \Leftrightarrow \,\,\left[ \matrix{
(I)\,\left\{ \matrix{
x + 1 < 0 \hfill \cr
2{x^2} + 7x + 5 \ge 0 \hfill \cr} \right. \hfill \cr
(II)\left\{ \matrix{
x + 1 \ge 0 \hfill \cr
2{x^2} + 7x + 5 > {(x + 1)^2} \hfill \cr} \right.\, \hfill \cr} \right. \cr} \) 

Ta có:

\((I) \Leftrightarrow \left\{ \matrix{
x < - 1 \hfill \cr
\left[ \matrix{
x \le - {5 \over 2} \hfill \cr
x \ge - 1 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x \le - {5 \over 2}\) 

\((II) \Leftrightarrow \left\{ \matrix{
x \ge - 1 \hfill \cr
{x^2} + 5x + 4 > 0 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x \ge - 1 \hfill \cr
\left[ \matrix{
x < - 4 \hfill \cr
x > - 1 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x > - 1\) 

Vậy: \(S = ( - \infty ;\, - {5 \over 2}{\rm{]}}\, \cup ( - 1;\, + \infty )\)

c) Ta có:

\(\eqalign{
& \sqrt {{x^2} + 4x - 5} \le x + 3 \cr&\Leftrightarrow \left\{ \matrix{
x + 3 \ge 0 \hfill \cr
{x^2} + 4x - 5 \ge 0 \hfill \cr
{x^2} + 4x - 5 \le {(x + 3)^2} \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x \ge - 3 \hfill \cr
\left[ \matrix{
x \le - 5 \hfill \cr
x \ge 1 \hfill \cr} \right. \hfill \cr
x \ge - 7 \hfill \cr} \right. \Leftrightarrow x \ge 1 \cr} \)

Vậy \(S = [1, +∞)\)

 


Bài 19 trang 223 SGK Đại số 10 Nâng cao

Điểm thi của 32 học sinh trong kỳ thi tiếng anh (thang điểm 100) như sau: 

 

a) Tính số trung vị trung bình (chính xác đến hàng trăm)

b) Tính số trung vị

c) Hãy trình bày mẫu số liệu trên dưới dạng bảng phân bố tần số ghép lớp với các nửa khoảng [40, 50); [50, 60); ...; [90, 100)

Đáp án

a) Số trung bình: \(\overline x  = 66,66\)

b) Số trung vị: \({M_e} = 65,5\)

c) Bảng phân bố tần số ghép lớp

Lớp

Tần số

[40, 50)

4

[50, 60)

6

[60, 70)

10

[70, 80)

6

[80, 90)

4

[90, 100)

2

 

N = 32

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác