Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.2 trên 5 phiếu

Giải SGK Toán 8 Kết Nối Tri Thức

CHƯƠNG 6. PHÂN THỨC ĐẠI SỐ

Giải bài tập SGK Toán 8 Kết nối tri thức tập 2 trang 25, 26 - Bài tập cuối chương 6. Một xe ô tô đi từ Hà Nội đến Vinh với vận tốc 60km/h và dự kiến sẽ đến Vinh sau 5 giờ chạy. Tuy nhiên, sau (2frac{2}{3}) giờ chạy với vận tốc 60km/h, xe dừng nghỉ 20 phút. Sau khi dừng nghỉ, để đến Vinh đúng thời gian dự kiến, xe phải tăng vận tốc so với chặng đầu

A. Trắc nghiệm

Bài 6.36 trang 25 SGK Toán 8 Kết nối tri thức tập 2

Khẳng định nào sau đây là đúng:

A. \(\frac{{{{\left( {x - 1} \right)}^2}}}{{x - 2}} = \frac{{{{\left( {1 - x} \right)}^2}}}{{2 - x}}\)

B. \(\frac{{3{\rm{x}}}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{3{\rm{x}}}}{{{{\left( {x - 2} \right)}^2}}}\)

C. \(\frac{{3{\rm{x}}}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{ - 3{\rm{x}}}}{{{{\left( {x - 2} \right)}^2}}}\)

D. \(\frac{{3{\rm{x}}}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{3{\rm{x}}}}{{{{\left( { - x - 2} \right)}^2}}}\)\(\)

Lời giải:

Khẳng định D là khẳng định đúng

Vì \({\left( {x + 2} \right)^2} = {\left( { - x - 2} \right)^2}\)

Bài 6.37 trang 25 SGK Toán 8 Kết nối tri thức tập 2

Khẳng định nào sau đây là sai:

A. \(\frac{{ - 6{\rm{x}}}}{{ - 4{{\rm{x}}^2}{{\left( {x + 2} \right)}^2}}} = \frac{3}{{2{\rm{x}}{{\left( {x + 2} \right)}^2}}}\)

B. \(\frac{{ - 5}}{{ - 2}} = \frac{{10{\rm{x}}}}{{4{\rm{x}}}}\)

C. \(\frac{{x + 1}}{{x - 1}} = \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}}\)

D. \(\frac{{ - 6{\rm{x}}}}{{ - 4{{\left( { - x} \right)}^2}{{\left( {x - 2} \right)}^2}}} = \frac{3}{{2{\rm{x}}{{\left( { - x + 2} \right)}^2}}}\)

Lời giải:

Đáp án đúng là: C

Khẳng định C là sai vì:

(x + 1)(x2 – x + 1) = x3 + 1 và (x – 1)(x2 + x + 1) = x3 – 1.

Suy ra (x + 1)(x2 – x + 1) ≠ (x – 1)(x2 + x + 1).

 

Bài 6.38 trang 25 SGK Toán 8 Kết nối tri thức tập 2

Trong hằng đẳng thức \(\frac{{2{{\rm{x}}^2} + 1}}{{4{\rm{x}} - 1}} = \frac{{8{{\rm{x}}^3} + 4{\rm{x}}}}{Q}\), Q là đa thức

A.4x

B. \(4{{\rm{x}}^2}\)

C.16x−4

D. \(16{{\rm{x}}^2} - 4{\rm{x}}\)

Lời giải:

\(\begin{array}{l}\frac{{2{{\rm{x}}^2} + 1}}{{4{\rm{x}} - 1}} = \frac{{8{{\rm{x}}^3} + 4{\rm{x}}}}{Q}\\ \Rightarrow Q = \frac{{\left( {8{{\rm{x}}^3} + 4{\rm{x}}} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}\\Q = \frac{{4{\rm{x}}\left( {2{{\rm{x}}^2} + 1} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}\\Q = 4{\rm{x}}\left( {4{\rm{x}} - 1} \right) = 16{{\rm{x}}^2} - 4{\rm{x}}\end{array}\)

Đáp án D

Bài 6.39 trang 25 SGK Toán 8 Kết nối tri thức tập 2

Nếu \(\frac{{ - 5{\rm{x}} + 5}}{{2{\rm{x}}y}} - \frac{{ - 9{\rm{x}} - 7}}{{2{\rm{x}}y}} = \frac{{b{\rm{x}} + c}}{{xy}}\) thì b + c

A. -4

B. 8

C. 4

D. -10

Lời giải:

Đáp án đúng là: B

Suy ra b = 2 và c = 6.

Vậy b + c = 2 + 6 = 8.

Bài 6.40 trang 25 SGK Toán 8 Kết nối tri thức tập 2

Một ngân hàng huy động vốn với mức lãi suất một năm là x%. Để sau một năm, người gửi lãi a đồng thì người đó phải gửi vào ngân hàng số tiền là:

A. \(\frac{{100{\rm{a}}}}{x}\) (đồng)

B. \(\frac{a}{{x + 100}}\) (đồng)

C. \(\frac{a}{{x + 1}}\) (đồng)

D. \(\frac{{100{\rm{a}}}}{{x + 100}}\) (đồng)

Lời giải:

Sau một năm, người gửi lãi a đồng thì người đó phải gửi vào ngân hàng số tiền là: \(\frac{{100{\rm{a}}}}{x}\)

Chọn đáp án A

B. Tự luận

Bài 6.41 trang 26 SGK Toán 8 Kết nối tri thức tập 2

Tìm đa thức P trong các đẳng thức sau:

a) \(P + \frac{1}{{x + 2}} = \frac{x}{{{x^2} - 2{\rm{x}} + 4}}\)

b) \(P - \frac{{4\left( {x - 2} \right)}}{{x + 2}} = \frac{{16}}{{x - 2}}\)

c) \(P.\frac{{x - 2}}{{x + 3}} = \frac{{{x^2} - 4{\rm{x}} + 4}}{{{x^2} - 9}}\)

d) \(P:\frac{{{x^2} - 9}}{{2{\rm{x}} + 4}} = \frac{{{x^2} - 4}}{{{x^2} + 3{\rm{x}}}}\)

Lời giải:

 

Bài 6.42 trang 26 SGK Toán 8 Kết nối tri thức tập 2

Rút gọn biểu thức sau:

a) \(\frac{2}{{3{\rm{x}}}} + \frac{x}{{x - 1}} + \frac{{6{{\rm{x}}^2} - 4}}{{2{\rm{x}}\left( {1 - x} \right)}}\)

b) \(\frac{{{x^3} + 1}}{{1 - {x^3}}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\)

c) \(\left( {\frac{2}{{x + 2}} - \frac{2}{{1 - x}}} \right).\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\)

d) \(1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\)

Lời giải:

a)

a) \(\frac{2}{{3{\rm{x}}}} + \frac{x}{{x - 1}} + \frac{{6{x^2} - 4}}{{2x\left( {1 - x} \right)}}\)\( = \frac{2}{{3{\rm{x}}}} + \frac{{ - x}}{{1 - x}} + \frac{{3{{\rm{x}}^2} - 2}}{{x\left( {1 - x} \right)}}\)\( = \frac{{2 - 2x - 3{x^2} + 9{x^2} - 6}}{{3x\left( {1 - x} \right)}}\)

\( = \frac{{6{x^2} - 2x - 4}}{{3x\left( {1 - x} \right)}} = \frac{2({3x+1})}{3x} \)

b)

\(\begin{array}{l}\frac{{{x^3} + 1}}{{1 - {x^3}}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\\ = \frac{{ - {x^3} - 1}}{{{x^3} - 1}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\\ = \frac{{ - {x^3} - 1 + x\left( {{x^2} + x + 1} \right) - \left( {{x^2} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{ - {x^3} - 1 + {x^3} + {x^2} + x - {x^2} + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{x}{{{x^3} - 1}}\end{array}\)

c)

Ta có: \(\frac{2}{{x + 2}} - \frac{2}{{1 - x}} = \frac{{2\left( {1 - x} \right) - 2\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {1 - x} \right)}} = \frac{{2 - 2{\rm{x}} - 2{\rm{x}} - 4}}{{\left( {x + 2} \right)\left( {1 - x} \right)}} = \frac{{ - 4x - 2}}{{\left( {x + 2} \right)\left( {1 - x} \right)}} = \frac{{2\left( {2x + 1} \right)}}{{\left( {x + 2} \right)\left( {x - 1} \right)}}\);

\(\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}} = \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}\).

Do đó

 \(\begin{array}{l}\left( {\frac{2}{{x + 2}} - \frac{2}{{1 - x}}} \right).\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}} = \frac{{2\left( {2x + 1} \right)}}{{\left( {x + 2} \right)\left( {x - 1} \right)}}.\frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}\\ = \frac{{2(x - 2)}}{{\left( {2x - 1} \right)\left( {x - 1} \right)}}\end{array}\)

d)

\(\begin{array}{l}1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\\ = 1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\\ = 1 + \frac{{{x^3} - x}}{{{x^2} + 1}}.\frac{{1 + x - 1}}{{1 - {x^2}}}\\ = 1 + \frac{{x\left( {{x^2} - 1} \right)}}{{{x^2} + 1}}.\frac{x}{{1 - {x^2}}}\\ = 1 + \frac{{ - {x^2}\left( {{x^2} - 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right)}}\\ = 1 + \frac{{ - {x^2}}}{{{x^2} + 1}}\\ = \frac{{{x^2} + 1 - {x^2}}}{{{x^2} + 1}}\\ = \frac{1}{{{x^2} + 1}}\end{array}\)

Bài 6.43 trang 26 SGK Toán 8 Kết nối tri thức tập 2

Cho phân thức: \(P = \frac{{2{\rm{x}} + 1}}{{x + 1}}\)

a) Viết điều kiện xác định của P

b) Hãy viết P dưới dạng \(a - \frac{b}{{x + 1}}\), trong đó a, b là số nguyên dương

c) Với giá trị nào của x thì P có giá trị là số nguyên

Lời giải:

a) Điều kiện xác định của P là x + 1 ≠ 0 hay x ≠ –1.

Do vậy x + 1 = – 1, suy ra x = – 2 hoặc x + 1 = 1, suy ra x = 0.

Vậy giá trị của P là số nguyên khi x = 0 hoặc x = – 2.

Bài 6.44 trang 26 SGK Toán 8 Kết nối tri thức tập 2

Một xe ô tô đi từ Hà Nội đến Vinh với vận tốc 60km/h và dự kiến sẽ đến Vinh sau 5 giờ chạy. Tuy nhiên, sau \(2\frac{2}{3}\) giờ chạy với vận tốc 60km/h, xe dừng nghỉ 20 phút. Sau khi dừng nghỉ, để đến Vinh đúng thời gian dự kiến, xe phải tăng vận tốc so với chặng đầu

a) Tính độ dài quãng đường Hà Nội - Vinh

b) Tính độ dài quãng đường còn lại sau khi dừng nghỉ

c) Cho biết ở chặng thứ hai xe tăng vận tốc thêm x (km/h). Hãy viết biểu thức P biểu thị thời gian (tính bằng giờ) thực tế xe chạy hết chặng đường Hà Nội - Vinh

d) Tính thời gian của P lần lượt tại x = 5, x = 10; x = 15, từ đó cho biết ở chặng thứ hai (sau khi xe dừng nghỉ):

- Nếu tăng vận tốc thêm 5km/h thì xe đến Vinh muộn hơn dự kiến bao nhiêu giờ?

- Nếu tăng vận tốc thêm 10km/h thì xe đến Vinh có đúng thời gian dự kiến không?

- Nếu tăng vận tốc thêm 15km/h thì xe đến Vinh sớm hơn dự kiến bao nhiêu giờ? 

Lời giải:

a) Độ dài quãng đường Hà Nội - Vinh: s = v.t => s = 60.5 = 300 (km)

b) Độ dài quãng đường còn lại sau khi dừng nghỉ: 300 − (60. \(\frac{8}{3}\)) = 140 (km)

c)  \(P = \frac{8}{3} + \frac{{140}}{{x + 60}} + \frac{1}{3} = 3 + \frac{{140}}{{x + 60}}\)

d) Có x = 5 => \(P = \frac{{67}}{{13}}\)

         x = 10 => P = 5

        x = 15 => P = \(\frac{{73}}{{15}}\)

=> Nếu tăng vận tốc thêm 5km/h thì xe đến Vinh muộn hơn dự kiến \(\frac{2}{{13}}\) giờ

 Nếu tăng vận tốc thêm 10km/h thì xe đến Vinh đến đúng thời gian dự kiến

 Nếu tăng vận tốc thêm 15km/h thì xe đến Vinh sớm hơn dự kiến \(\frac{2}{{15}}\) giờ

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

  • Giải bài 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 trang 32 SGK Toán 8 tập 2 - KNTT

    Giải bài tập SGK Toán 8 Kết nối tri thức tập 2 trang 32 - Bài 25 Phương trình bậc nhất một ẩn. Bạn Mai mua cả sách và vở hết 500 nghìn đồng. Biết rằng số tiền mua sách nhiều gấp rưỡi số tiền mua vở, hãy tính số tiền bạn Mai dùng để mua mỗi loại

  • Giải bài 7.7, 7.8, 7.9, 7.10, 7.11 trang 35, 36 SGK Toán 8 tập 2 - KNTT

    Giải bài tập SGK Toán 8 Kết nối tri thức tập 2 trang 35, 36 - Bài 26 Giải bài toán bằng cách lập phương trình. Chị Linh làm việc trong một ngân hàng và được thưởng Tết bằng 2,5 tháng lương. Tổng thu nhập một năm của chị Linh bao gồm lương 12 tháng và thưởng Tết là 290 triệu đồng. Hỏi lương hằng tháng của chị Linh là bao nhiêu

  • Giải bài 7.12, 7.13, 7.14, 7.15, 7.16, 7.17 trang 38, 39 SGK Toán 8 tập 2 - KNTT

    Giải bài tập SGK Toán 8 Kết nối tri thức tập 2 trang 38, 39 - Luyện tập chung. Chu vi của một mảnh vườn hình chữ nhật là 42m. Tìm chiều dài và chiều rộng của mảnh vườn, biết chiều rộng ngắn hơn chiều dài là 3m

  • Giải bài 7.18, 7.19, 7.20, 7.21, 7.22, 7.23 trang 7 SGK Toán 8 tập 2 - KNTT

    Giải bài tập SGK Toán 8 Kết nối tri thức tập 2 trang 44, 45, 46 - Bài 27 Khái niệm hàm số và đồ thị của hàm số. Các giá trị tương ứng của hai đại lượng x và y cho bởi các bảng sau. Đại lượng y có phải là một hàm số của x không?

Bài giải mới nhất

Bài giải mới nhất các môn khác