Bài 5 trang 146 SGK Giải tích 12
Cho hàm số: y = x4 + ax2 + b
a) Tính a, b để hàm số có cực trị bằng \({3 \over 2}\) khi x = 1
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho khi \(a = {{ - 1} \over 2},b = 1\)
c) Viết phương trình tiếp tuyến của (C) tại các điểm có tung độ bằng 1
Giải
Ta có: y’ = 4x3 + 2ax
a) Nếu hàm số có cực trị bằng \({3 \over 2}\) khi x = 1 thì:
\(\left\{ \matrix{
y'(1) = 0 \hfill \cr
y(1) = {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4 + 2a = 0 \hfill \cr
1 + a + b = {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = - 2 \hfill \cr
b = {5 \over 2} \hfill \cr} \right.\)
b) Khi \(a = {{ - 1} \over 2},b = 1\) ta có hàm số: \(y = {x^4} - {1 \over 2}{x^2} + 1\)
_ Tập xác định: (-∞, +∞)
_ Sự biến thiên: y’ = 4x3 – x = x(4x2 – 1)
y’ = 0 ⇔ x = 0, \(x = \pm {1 \over 2}\)
Trên các khoảng \(({{ - 1} \over 2},0) \cup ({1 \over 2}, + \infty )\) , y’ > 0 nên hàm số đồng biến
Trên các khoảng \(( - \infty ,{{ - 1} \over 2}) \cup (0,{1 \over 2})\) , y’ < 0 nên hàm số nghịch biến
_ Cực trị: Hàm số đạt cực đại tại x = 0, yCD = 1
Hàm số đạt cực tiểu tại \(x = \pm {1 \over 2},{y_{CT}} = {{15} \over {16}}\)
Bảng biến thiên:
Đồ thị hàm số:
Đồ thị cắt trục tung tại điểm y = 1, không cắt trục hoành.
c) Với y = 1 ta có phương trình:
\({x^4} - {1 \over 2}{x^2} = 0 \Leftrightarrow x \in \left\{ {0, \pm {1 \over {\sqrt 2 }}} \right\}\)
Trên đồ thị có 2 điểm với tung độ bằng 1 là:
\({M_1}({{ - 1} \over {\sqrt 2 }},1);{M_2}(0,1);{M_3}({1 \over {\sqrt 2 }},1)\)
Ta lấy y’(0) = 0 nên tiếp tuyến với đồ thị tại M2 có phương trình là y = 1
Lại có:
\(y'({1 \over {\sqrt 2 }}) = {1 \over {\sqrt 2 }};y'({1 \over {\sqrt 2 }}) = {{ - 1} \over {\sqrt 2 }}\)
\(y = {{ - 1} \over {\sqrt 2 }}x + {1 \over 2} \Leftrightarrow y = {1 \over {\sqrt 2 }}x + {1 \over 2}\)
Bài 6 trang 146 SGK Giải tích 12
Cho hàm số \(y = {{x - 2} \over {x + m - 1}}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 2
b) Viết phương trình tiếp tuyến d của đồ thị (C) tại điểm có hoành độ a ≠ -1.
Giải
a) Khi m = 2, ta có hàm số: \(y = {{x - 2} \over {x + 1}}\)
_ Tập xác định: (-∞, -1) ∪ (-1, +∞)
_ Sự biến thiên: \(y' = {3 \over {{{(x + 1)}^2}}} > 0,\forall x \in ( - \infty , - 1) \cup (1, + \infty )\)
nên hàm số đồng biến trên hai khoảng này.
_ Hàm số không có cực trị
_ Giới hạn tại vô cực và tiệm cận ngang
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {{x - 2} \over {x + 1}} = 1;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } {{x - 2} \over {x + 1}} = 1\)
Nên x = -1 là tiệm cận đứng.
Bảng biến thiên:
Đồ thị hàm số:
Đồ thị cắt trục tung tại y = -2, cắt trục hoành tại x = 2
b) Tiếp tuyến của đồ thị (C) tại điểm M có hoành độ a≠-1 có phương trình:
\(y = y'(a)(x - a) + y(a) = {3 \over {{{(a + 1)}^2}}}(x - a) + {{a - 2} \over {a + 1}}\)
Bài 7 trang 146 SGK Giải tích 12
Cho hàm số \(y = {2 \over {2 - x}}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b) Tìm các giao điểm của (C) và đồ thị của hàm số y = x2 + 1. Viết phương trình tiếp tuyến của (C) tại mỗi giao điểm.
c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng H giới hạn bởi đồ thị (C) và các đường thẳng y = 0, x = 0, x = 1 xung quanh trục Ox.
Giải
a) _ Tập xác định: (-∞, 2) ∪(2, +∞)
_ Sự biến thiên: \(y' = {2 \over {{{(2 - x)}^2}}} > 0,\forall x \in ( - \infty ,2) \cup (2, + \infty )\)
Nên hàm số đồng biến trên hai khoảng này.
_ Hàm số không có cực trị
_ Giới hạn tại vô cực và tiệm cận ngang
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {2 \over {2 - x}} = 0;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } {2 \over {2 - x}} = 0\)
Nên y = 0 là tiệm cận ngang.
_ Giới hạn vô cực và tiệm cận đứng:
\(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} ({2 \over {2 - x}}) = - \infty ;\mathop {\lim }\limits_{x \to {2^ - }} = \mathop {\lim }\limits_{x \to {2^ - }} ({2 \over {2 - x}}) = + \infty \)
Nên x = 2 là tiệm cận đứng.
_ Bảng biến thiên:
Đồ thị hàm số:
Đồ thị hàm số:
Đồ thị cắt trục tung tại y = 1, không cắt trục hoành.
b) Phương trình xác định hoành độ giao điểm:
\({2 \over {2 - x}} = {x^2} + 1 \Leftrightarrow {x^3} - 2{x^2} + x = 0 \Leftrightarrow x \in \left\{ {0,1} \right\}\)
Hai đồ thị cắt nhau tại hai điểm M1 (0, 1), M2(1, 2)
Tiếp tuyến với đồ thị (C): \(y = {2 \over {2 - x}}\) tại điểm M1 có phương trình là: \(y = {1 \over 2}x + 1\)
Tiếp tuyến tại điểm M2 có phương trình y = 2(x – 1) + 2 = 2x
c) Trong khoảng (0, 1) đồ thị (C) nằm phía trên trục hoành nên thể tích cần tính là :
\(V = \pi \int_0^1 {({2 \over {2 - x}}} {)^2} = 2\pi \)
Bài 8 trang 147 SGK Giải tích 12
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
a) \(f(x) = 2x^3– 3x^2– 12x + 1\) trên đoạn \(\left[ { - 2,{5 \over 2}} \right]\)
b) \( f(x) = x^2lnx\) trên đoạn \(\left[ {1,e} \right]\)
c) \(f(x) = xe^{-x}\) trên nửa khoảng \([0, +∞)\)
d) \(f(x) = 2sinx + sin2x\) trên đoạn \(\left[ {0,{{3\pi } \over 2}} \right]\)
Giải
a) \(f(x) = 2x^3– 3x^2– 12x + 1 ⇒ f’(x) = 6x^2 – 6x – 12\)
\(f’(x) = 0 ⇔ x =-1\) hoặc \(x=2\)
So sánh các giá trị:
\(f(-2) = -3\); \( f(-1) = 8\);
\(f(2) = -19\), \(f({5 \over 2}) = {{ - 33} \over 2}\)
Suy ra:
\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ { - 2,{5 \over 2}} \right]} f(x) = f( - 1) = 8 \cr
& \mathop {min}\limits_{x \in \left[ { - 2,{5 \over 2}} \right]} f(x) = f(2) = - 19 \cr} \)
b) \(f(x) = x^2 lnx ⇒ f’(x)= 2xlnx + x > 0, ∀ x ∈ [1, e]\) nên \(f(x)\) đồng biến.
Do đó:
\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ {1,e} \right]} f(x) = f(e) = {e^2} \cr
& \mathop {min}\limits_{x \in \left[ {1,e} \right]} f(x) = f(1) = 0 \cr} \)
c) \(f(x)= xe^{-x}⇒ f’(x)=e^{-x} –xe^{-x} = (1 – x)e^{-x}\) nên:
\(f’(x) = 0 ⇔ x = 1, f’(x) > 0, ∀x ∈ (0, 1)\) và \(f’(x) < 0, ∀x ∈ (1, +∞)\)
nên:
\(\mathop {\max }\limits_{x \in {\rm{[}}0, + \infty )} f(x) = f(1) = {1 \over e}\)
Ngoài ra \(f(x)= xe^{-x} > 0, ∀ x ∈ (0, +∞)\) và \(f(0) = 0\) suy ra
\(\mathop {\min}\limits_{x \in {\rm{[}}0, + \infty )} f(x) = f(0) = 0\)
d) \(f(x) = 2sinx + sin2x ⇒ f’(x)= 2cosx + 2cos2x\)
\(f’(x) = 0 ⇔ cos 2x = -cosx ⇔ 2x = ± (π – x) + k2π\)
⇔ \(x \in \left\{ { - \pi + k2\pi ;{\pi \over 3} + {{k2\pi } \over 3}} \right\}\)
Trong khoảng \(\left[ {0,{{3\pi } \over 2}} \right]\) , phương trình \(f’(x) = 0\) chỉ có hai nghiệm là \({x_1} = {\pi \over 3};{x_2} = \pi \)
So sánh bốn giá trị : \(f(0) = 0\); \(f({\pi \over 3}) = {{3\sqrt 3 } \over 2};f(\pi ) = 0;f({{3\pi } \over 2}) = - 2\)
Suy ra:
\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ {0,{{3\pi } \over 2}} \right]} f(x) = f({\pi \over 3}) = {{3\sqrt 3 } \over 2} \cr
& \mathop {min}\limits_{x \in \left[ {0,{{3\pi } \over 2}} \right]} f(x) = f({{3\pi } \over 2}) = - 2 \cr} \)
Giaibaitap.me
Giải bài tập trang 147 ôn tập cuối năm SGK Giải tích 12. Câu 9: Giải các phương trình sau...
Giải bài tập trang 148 ôn tập cuối năm SGK Giải tích 12. Câu 13: Tính diện tích hình phẳng giới hạn bởi các đường thẳng...
Giải bài tập trang 12 bài 1 khái niệm về khối đa diện SGK Hình học 12. Câu 1: Chứng minh rằng một đa diện có các mặt là những tam giác thì tổng số các mặt của nó là một số chẵn. Cho ví dụ...
Giải bài tập trang 18 bài 2 khối đa diện lồi và khối đa diện đều SGK Hình học 12. Câu 1: Cắt bìa theo mẫu dưới đây (h.1.23), gấp theo đường kẻ, rồi dán các mép lại để được các hình tứ diện đều, hình lập phương và hình bát diện đều...