Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3 trên 2 phiếu

Giải bài tập Toán 12

CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Giải bài tập trang 10 bài 1 sự đồng biến, nghịch biến của hàm số SGK Giải tích 12. Câu 4: Chứng minh rằng...

 

Bài 4 trang 10 sách sgk giải tích 12

Chứng minh rằng hàm số \(y=\sqrt {2x - {x^2}}\) đồng biến trên khoảng \((0 ; 1)\) và nghịch biến trên các khoảng \((1 ; 2)\).

Giải:

Tập xác định : \(D = [0 ; 2]\); \(y' = \frac{1-x}{^{\sqrt{2x-x^{2}}}}\), \(\forall x \in (0;2)\); \(y' = 0 \)\(\Leftrightarrow x=1\)

Bảng biến thiên :

     

Vậy hàm số đồng biến trên khoảng \((0 ; 1)\) và nghịch biến trên khoảng \((1 ; 2)\).

Bài 5 trang 10 sách sgk giải tích 12

Chứng minh các bất đẳng thức sau:

a) \(tanx > x\) \((0 < x < \frac{\pi }{2})\);  

b) \(tanx > x + \frac{x^{3}}{3} (0 < x < \frac{\pi }{2})\).

Giải:

a) Xét hàm số \(y = f(x) = tanx – x\) với \(x ∈ (0 ; \frac{\pi }{2})\).

Ta có : \(y’\) = \(\frac{1}{cos^{2}x} - 1 ≥ 0\), \(x ∈ (0 ; \frac{\pi }{2})\); \(y’ = 0 ⇔ x = 0\). Vậy hàm số luôn đồng biến trên \((0 ; \frac{\pi }{2})\).

Từ đó \(∀x ∈ (0 ; \frac{\pi }{2})\) thì \(f(x) > f(0)\)

\(⇔ tanx – x > tan0 – 0 = 0\) hay \(tanx > x\).

b) Xét hàm số \(y = g(x) = tanx – x\) - \(\frac{x^{3}}{3}\). với \(x ∈ (0 ; \frac{\pi }{2})\).

Ta có : \(y’ = \frac{1}{cos^{2}x} - 1 -x^2\)=\(1 + {\tan ^2}x - 1 - {x^2} = (ta{n^2}x - {x^2})\)

                                     = \((tanx - x)(tanx + x)\),  \(∀x ∈ (0 ;\frac{\pi }{2} )\).

Vì \(∀x ∈ (0 ; \frac{\pi }{2})\) nên \(tanx +x ≥ 0\) và \(tanx - x >0\) (theo câu a).

Do đó \(y' ≥ 0, ∀x ∈ (0 ;\frac{\pi }{2})\).

         Dễ thấy \(y' = 0 ⇔ x = 0\). Vậy hàm số luôn đồng biến trên (0 ; \(\frac{\pi }{2}\)). Từ đó : \(∀x ∈ (0 ; \frac{\pi }{2})\) thì \(g(x) > g(0) \)\(⇔ tanx – x - \frac{x^{3}}{3}\) \(> tan0 - 0 - 0 = 0\) hay \( tanx > x + \frac{x^{3}}{3}\).

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

  • Giải bài 1, 2, 3 trang 18 SGK Giải tích 12

    Giải bài tập trang 18 bài 2 cực trị của hàm số SGK Giải tích 12. Câu 1: Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm số sau:...

  • Giải bài 4, 5, 6 trang 18 SGK Giải tích 12

    Giải bài tập trang 18 bài 2 cực trị của hàm số SGK Giải tích 12. Câu 4: Chứng minh rằng với mọi giá trị của tham số, hàm số sau luôn luôn có một điểm cực đại và một điểm cực tiểu....

  • Giải bài 1, 2, 3 trang 23, 24 SGK Giải tích 12

    Giải bải tập trang 23, 24 bài 3 giá trị lớn nhất và giá trị nhỏ nhất của hàm số SGK Giải tích 12. Câu 1: Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:...

  • Giải bài 4, 5 trang 24 SGK Giải tích 12

    Giải bài tập trang 24 bài 3 giá trị lớn nhất và giá trị nhỏ nhất của hàm số SGK Giải tích 12. Câu 4: Tính giá trị lớn nhất của các hàm số sau...