Bài 1 trang 18 sách sgk giải tích 12
Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm số sau :
a) \(y{\rm{ }} = {\rm{ }}2{x^{3}} + {\rm{ }}3{x^2}-{\rm{ }}36x{\rm{ }}-{\rm{ }}10\) ;
b) \(y{\rm{ }} = {\rm{ }}x{^4} + {\rm{ }}2{x^2}-{\rm{ }}3\) ;
c) \(y = x + {1 \over x}\)
d) \(y{\rm{ }} = {\rm{ }}{x^3}{\left( {1{\rm{ }}-{\rm{ }}x} \right)^{2}}\);
e) \(y = \sqrt {{x^2} - x + 1}\)
Giải:
a) Tập xác định: \(D = \mathbb R\)
\(\eqalign{
& y' = 6{{\rm{x}}^2} + 6{\rm{x}} - 36;y' = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = 2\left( {y = - 54} \right) \hfill \cr
x = - 3\left( {y = 71} \right) \hfill \cr} \right. \cr} \)
Bảng biến thiên:
Hàm số đạt cực trị tại \(x = -3\) và \(y\)CĐ \(= 71\)
Hàm số đạt cực tiểu tại \(x = 2\) và \(y\)CT \(= -54\)
b) Tập xác định: \(D =\mathbb R\)
\(y' = 4{{\rm{x}}^3} + 4{\rm{x}} = 4{\rm{x}}\left( {{x^2} + 1} \right)\);
\(y' = 0 \Leftrightarrow x = 0\left( {y = - 3} \right)\)
Bảng biến thiên:
Hàm số có điểm cực tiểu tại \(x = 0\) và \(y\)CT \(= -3\)
c) Tập xác định: \(D = \mathbb R\)\ { 0 }
\(\eqalign{
& y' = 1 - {1 \over {{x^2}}} = {{{x^2} - 1} \over {{x^2}}};y' = 0 \cr
& \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow \left[ \matrix{
x = 1\left( {y = 2} \right) \hfill \cr
x = - 1\left( {y = - 2} \right) \hfill \cr} \right. \cr}\)
Bảng biến thiên
Hàm số đạt cực đại tại \(x = -1\), \(y\)CĐ \(= -2\)
Hàm số đạt cực tiểu tại \(x = 1\), \(y\)CT \(= 2\)
d) Tập xác định \(D = \mathbb R\)
\( y' = 3{{\rm{x}}^2}{\left( {1 - x} \right)^2} - 2{{\rm{x}}^3}\left( {1 - x} \right) \)
\(= {x^2}\left( {1 - x} \right)\left( {3 - 5{\rm{x}}} \right)\)
\(\eqalign{
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 1\left( {y = 0} \right) \hfill \cr
x = {3 \over 5}\left( {y = {{108} \over {3125}}} \right) \hfill \cr
x = 0 \hfill \cr} \right. \cr} \)
Bảng biến thiên:
Hàm số đạt cực đại tại \(x = {3 \over 5};y = {{108} \over {3125}}\)
Hàm số đạt cực tiểu tại \(x = 1\), \(y\)CT =\( 0\)
e) Vì \(x^2\) –\( x + 1 > 0, ∀ ∈ \mathbb R\) nên tập xác định : \(D = \mathbb R\)
\(y' = {{2{\rm{x}} - 1} \over {2\sqrt {{x^2} - x + 1} }};y = 0 \Leftrightarrow x = {1 \over 2}\left( {y = {{\sqrt 3 } \over 2}} \right)\)
Bảng biến thiên:
Hàm số đạt cực tiểu tại \(x = {1 \over 2};{y_{CT}} = {{\sqrt 3 } \over 2}\)
Bài 2 trang 18 sách sgk giải tích 12
Áp dụng quy tắc II, hãy tìm các điểm cực trị của hàm số sau:
a) \(y{\rm{ }} = {\rm{ }}{x^4} - {\rm{ }}2{x^2} + {\rm{ }}1\) ; \(b) y = sin2x – x\);
c)\(y = sinx + cosx\); d)\(y{\rm{ }} = {\rm{ }}{x^5}-{\rm{ }}{x^3}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1\).
Giải:
a) \(y'{\rm{ }} = 4{x^3}-{\rm{ }}4x{\rm{ }} = {\rm{ }}4x({x^2} - {\rm{ }}1)\) ;
\(y' = 0\) \(⇔ 4x(\)\(x^2\)\( - 1) = 0 ⇔ x = 0, x = \pm 1\).
\( y'' = 12x^2-4\).
\(y''(0) = -4 < 0\) nên hàm số đạt cực đại tại \(x = 0\),
\(y\)cđ =\( y(0) = 1\).
\(y''(\pm 1) = 8 > 0\) nên hàm số đạt cực tiểu tại \(x = \pm1\),
\(y\)ct = \(y(\pm1)\) = 0.
b) \(y' = 2cos2x - 1\) ;
\(y'=0\Leftrightarrow cos2x=\frac{1}{2}\Leftrightarrow 2x=\pm \frac{\pi }{3}+k2\pi\)
\(\Leftrightarrow x=\pm \frac{\pi }{6}+k\pi .\)
\(y'' = -4sin2x\) .
\(y''\left ( \frac{\pi }{6} +k\pi \right )=-4sin\left ( \frac{\pi }{3} +k2\pi \right )=-2\sqrt{3}<0\) nên hàm số đạt cực đại tại các điểm \(x = \frac{\pi }{6}+ kπ\),
\(y\)cđ =\( sin(\frac{\pi }{3}+ k2π) - \frac{\pi }{6} - kπ\) = \(\frac{\sqrt{3}}{2}-\frac{\pi }{6}- kπ\) , \(k ∈\mathbb Z\).
\(y''\left ( -\frac{\pi }{6} +k\pi \right )=-4sin\left (- \frac{\pi }{3} +k2\pi \right )=2\sqrt{3}>0\) nên hàm số đạt cực tiểu tại các điểm \(x =-\frac{\pi }{6}+ kπ\),
\(y\)ct = \(sin(-\frac{\pi }{3}+ k2π) + \frac{\pi }{6} - kπ\) =\(-\frac{\sqrt{3}}{2}+\frac{\pi }{6} - kπ\) , \(k ∈\mathbb Z\).
c) \(y = sinx + cosx \)= \(\sqrt{2}sin\left (x+\frac{\pi }{4} \right )\);
\( y' \)=\(\sqrt{2}cos\left (x+\frac{\pi }{4} \right )\) ;
\(y'=0\Leftrightarrow cos\left (x+\frac{\pi }{4} \right )=0\Leftrightarrow\)\(x+\frac{\pi }{4} =\frac{\pi }{2}+k\pi \Leftrightarrow x=\frac{\pi }{4}+k\pi .\)
\(y''=-\sqrt{2}sin\left ( x+\frac{\pi }{4} \right ).\)
\(y''\left ( \frac{\pi }{4} +k\pi \right )=-\sqrt{2}sin\left ( \frac{\pi }{4}+k\pi +\frac{\pi }{4} \right )\)
\(=-\sqrt{2}sin\left ( \frac{\pi }{2} +k\pi \right )\)
\(=\left\{ \matrix{
- \sqrt 2 \text{ nếu k chẵn} \hfill \cr
\sqrt 2 \text{ nếu k lẻ} \hfill \cr} \right.\)
Do đó hàm số đạt cực đại tại các điểm \(x=\frac{\pi }{4}+k2\pi\),
đạt cực tiểu tại các điểm \(x=\frac{\pi }{4}+(2k+1)\pi (k\in \mathbb{Z}).\)
d) \(y'{\rm{ }} = {\rm{ }}5{x^4} - {\rm{ }}3{x^2} - {\rm{ }}2{\rm{ }} = {\rm{ }}({x^2} - {\rm{ }}1)(5{x^2} + {\rm{ }}2)\); \(y'{\rm{ }} = {\rm{ }}0 \Leftrightarrow {x^{2}} - {\rm{ }}1{\rm{ }} = {\rm{ }}0 \Leftrightarrow {\rm{ }}x{\rm{ }} = \pm 1\).
\(y''{\rm{ }} = {\rm{ }}20{x^{3}} - {\rm{ }}6x\).
\(y''(1) = 14 > 0\) nên hàm số đạt cực tiểu tại \(x = 1\),
\(y\)ct =\( y(1) = -1\).
\(y''(-1) = -14 < 0\) hàm số đạt cực đại tại \(x = -1\),
\(y\)cđ = \(y(-1) = 3\).
Bài 3 trang 18 sách sgk giải tích 12
Chứng minh rằng hàm số \(y=\sqrt{\left | x \right |}\) không có đạo hàm tại \(x = 0\) nhưng vẫn đạt cực tiểu tại điểm đó.
Giải:
Đặt \(y=f(x)=\sqrt{\left | x \right |}\). Giả sử \(x > 0\), ta có :
\(\underset{x\rightarrow 0^{+}}{lim}\frac{\sqrt{x}}{x}=\underset{x\rightarrow 0^{+}}{lim}\frac{1}{\sqrt{x}}=+\infty .\)
Do đó hàm số không có đạo hàm tại \(x = 0\) . Tuy nhiên hàm số đạt cực tiểu tại \(x = 0\) vì \(f(x)=\sqrt{\left | x \right |}\geq 0=f(0),\forall x\in\mathbb R\).
Giaibaitap.me
Giải bài tập trang 18 bài 2 cực trị của hàm số SGK Giải tích 12. Câu 4: Chứng minh rằng với mọi giá trị của tham số, hàm số sau luôn luôn có một điểm cực đại và một điểm cực tiểu....
Giải bải tập trang 23, 24 bài 3 giá trị lớn nhất và giá trị nhỏ nhất của hàm số SGK Giải tích 12. Câu 1: Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:...
Giải bài tập trang 24 bài 3 giá trị lớn nhất và giá trị nhỏ nhất của hàm số SGK Giải tích 12. Câu 4: Tính giá trị lớn nhất của các hàm số sau...
Giải bài tập trang 30 bài 4 đường tiệm cận SGK Giải tích 12. Câu 1: Tìm các tiệm cận của đồ thị hàm số:...