Bài 2.9 trang 103 Sách bài tập (SBT) Giải tích 12
Vẽ đồ thị của hai hàm số sau trên cùng một hệ trục tọa độ:
\(y = {x^6}\) và \(y = {x^{ - 6}}\)
Hướng dẫn làm bài:
* Xét hàm số y = x6
Tập xác định D = R. Hàm số đã cho là hàm số chẵn.
\(\eqalign{
& y' = 6{x^5} \cr
& \mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to + \infty } = + \infty \cr} \)
Đồ thị không có tiệm cận
Bảng biến thiên
* Xét hàm số \(y = {x^{ - 6}}\)
Tập xác định: D = R\{0}. Hàm số đã cho là hàm số chẵn.
\(\eqalign{
& y' = - 6{x^{ - 7}} \cr
& \mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ + }} y = + \infty ,\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to + \infty } y = 0 \cr} \)
Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.
Bảng biến thiên:
Đồ thị của các hàm số \(y = {x^6},y = {x^{ - 6}}\) như sau. Các đồ thị này đều có trục đối xứng là trục tung.
Bài 2.10 trang 103 Sách bài tập (SBT) Giải tích 12
Vẽ đồ thị của các hàm số \(y = {x^2}\) và \(y = {x^{{1 \over 2}}}\) trên cùng một hệ trục tọa độ. Hãy so sánh giá trị của các hàm số đó khi \(x = 0,5;1;{3 \over 2};2;3;4.\)
Hướng dẫn làm bài:
Đặt \(f(x) = {x^2},x \in R\)
\(g(x) = {x^{{1 \over 2}}} = \sqrt x ,x > 0\)
Đồ thị:
Từ đồ thị của hai hình đó ta có:
\(\begin{array}{l}
f(0,5) < g(0,5)\\
f(1) = g(1) = 1;f(\frac{3}{2}) > g(\frac{3}{2})f(2) > g(2);\\
f(3) > g(3),f(4) > g(4)
\end{array}\)
Bài 2.11 trang 103 Sách bài tập (SBT) Giải tích 12
Hãy viết các số sau theo thứ tự tăng dần:
a) \({(0,3)^\pi },{(0,3)^{0,5}},{(0,3)^{\frac{2}{3}}},{(0,3)^{3,1415}}\)
b) \(\sqrt {{2^\pi }} ,{(1,9)^\pi },{(\frac{1}{{\sqrt 2 }})^\pi },{\pi ^\pi }\)
c) \({5^{ - 2}},{5^{ - 0,7}},{5^{\frac{1}{3}}},{(\frac{1}{5})^{2,1}}\)
d) \({(0,5)^{ - \frac{2}{3}}},{(1,3)^{ - \frac{2}{3}}},{\pi ^{ - \frac{2}{3}}},{(\sqrt 2 )^{ - \frac{2}{3}}}\)
Hướng dẫn làm bài:
a) \({(0,3)^\pi };{(0,3)^{3,1415}};{(0,3)^{\frac{2}{3}}};{(0,3)^{0,5}}\)
(vì cơ số a = 0,3 < 1 và \(\pi > 3,1415 > \frac{2}{3} > 0,5\) )
b) \({(\frac{1}{{\sqrt 2 }})^\pi };{(\sqrt 2 )^\pi };{(1,9)^\pi };{\pi ^\pi }\) (vì \(\frac{1}{{\sqrt 2 }} < \sqrt 2 < 1,9 < \pi \) )
c) \({(\frac{1}{5})^{2,1}};{5^{ - 2}};{5^{ - 0,7}};{5^{\frac{1}{3}}}\)
d) \({\pi ^{ - \frac{2}{3}}};{(\sqrt 2 )^{ - \frac{2}{3}}};{(1,3)^{ - \frac{2}{3}}};{(0,5)^{ - \frac{2}{3}}}\).\
Giaibaitap.me
Giải bài tập trang 108 bài 3 lôgarit Sách bài tập (SBT) Giải tích 12. Câu 2.12: Tính...
Giải bài tập trang 108 bài 3 lôgarit Sách bài tập (SBT) Giải tích 12. Câu 2.15: Hãy tính...
Giải bài tập trang 115, 116 bài phương trình mũ và phương trình logarit Sách bài tập (SBT) Giải tích 12. Câu 2.18: Hãy so sánh mỗi số sau với 1...
Giải bài tập trang 116 bài phương trình mũ và phương trình logarit Sách bài tập (SBT) Giải tích 12.