Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 12

CHƯƠNG II. HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT

Giải bài tập trang 126 bài 6 bất phương trình mũ và bất phương trình logarit Sách bài tập (SBT) Giải tích 12. Câu 2.36: Giải phương trình...

Bài 2.36 trang 126 Sách bài tập (SBT) Giải tích 12

Giải phương trình \({25^x} - {6.5^x} + 5 = 0\)  (Đề thi tốt nghiệp THPT năm 2009)

Hướng dẫn làm bài:

Đáp số: x = 0; x = 1.

 


Bài 2.37 trang 126 Sách bài tập (SBT) Giải tích 12

Giải phương trình: \({4^{2x + \sqrt {x + 2} }} + {2^{{x^3}}} = {4^{2 + \sqrt {x + 2} }} + {2^{{x^3} + 4x - 4}}\) (Đề thi đại học năm 2010, khối D)

Hướng dẫn làm bài:

Điều kiện: \(x \ge  - 2\)

Phương trình tương đương với:

\(({2^{4x}} - {2^4})({2^{2\sqrt {x + 2} }} - {2^{{x^3} - 4}}) = 0\) . Suy ra:

\(\Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{{2^{4x}} - {2^4} = 0}\\
{{2^{2\sqrt {x + 2} }} - {2^{{x^3} - 4}} = 0}
\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{x = 1}\\
{2\sqrt {x + 2} = {x^3} - 4}
\end{array}} \right.\)            

Nhận thấy \(x \ge \sqrt[3]{4}\)và phương trình có một nghiệm x = 2. Trên \({\rm{[}}\sqrt[3]{4}; + \infty )\) , hàm số  \(f(x) = 2\sqrt {x + 2}  - {x^3} + 4\) có đạo hàm \(f(x) = 2\sqrt {x + 2}  - {x^3} + 4\)  nên f(x) luôn nghịch biến. Suy ra x = 2 là nghiệm duy nhất.

Vậy phương trình có nghiệm x = 1; x = 2.

 


Bài 2.38 trang 126 Sách bài tập (SBT) Giải tích 12

Giải phương trình: 

\(f(x) = 2\sqrt {x + 2}  - {x^3} + 4{\log _2}(8 - {x^2}) + {\log _{\frac{1}{2}}}(\sqrt {1 + x}  + \sqrt {1 - x} ) - 2 = 0\)

(Đề thi Đại học năm 2011, khối D)

Hướng dẫn làm bài:

Điều kiện: \( - 1 \le x \le 1\)

Phương trình đã cho tương đương với:

\(\eqalign{
& {\log _2}(8 - {x^2}) = {\log _2}{\rm{[}}4(\sqrt {1 + x} + \sqrt {1 - x} ){\rm{]}} \cr 
& \Leftrightarrow {(8 - {x^2})^2} = 16(2 + 2\sqrt {1 - {x^2}} ) \cr} \)

Đặt \(t = \sqrt {1 - {x^2}} \)  ta được :

\(\eqalign{
& {t^4} + 14{t^2} - 32t + 17 = 0 \cr 
& \Leftrightarrow {(t - 1)^2}({t^2} + 2t + 17) = 0 \cr 
& \Leftrightarrow t = 1 \cr} \)

Suy ra x = 0. Vậy phương trình có nghiệm x = 0

 

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác