Trang chủ
Loigiaihay.com 2024

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
3.4 trên 7 phiếu

Giải bài tập Toán 12 Nâng cao

CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Giải bài tập trang 22 bài 3 giá trị lớn nhất và giá trị nhỏ nhất của hàm số SGK Giải tích 12 Nâng cao. Câu 16: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số...

Bài 16 trang 22 SGK Đại số và Giải tích 12 Nâng cao

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: \(f\left( x \right) = {\sin ^4}x + {\cos ^4}x\)

Giải

TXĐ: \(D=\mathbb R\)

\(\eqalign{
& f\left( x \right) = {\left( {{{\sin }^2}x} \right)^2} + {\left( {{{\cos }^2}x} \right)^2} + 2{\sin ^2}x{\cos ^2}x \cr&\,\,\,\,\,\,\,\,\,\,\,\;\;\;\;- 2{\sin ^2}x{\cos ^2}x \cr 
& \,\,\,\,\,\,\,\,\,\,\,\;\; = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x \cr&\,\,\,\,\,\,\,\,\,\,\,\;\;= 1 - {1 \over 2}{\sin ^2}2x \cr} \)

Vì \(0 \le {\sin ^2}2x \le 1\) nên: \(\,\,f\left( x \right) \le 1\) với mọi \(x \in {\mathbb{R}},f\left( 0 \right) = 1\). Vậy \(\mathop {\max f\left( x \right)}\limits_{x \in {\mathbb {R}}}  = 1\)

\(*\,\,\,f\left( x \right) \ge {1 \over 2}\) với mọi \(x \in {\mathbb{R}},f\left( {{\pi  \over 4}} \right) = 1 - {1 \over 2} = {1 \over 2}\)

Vậy \(\mathop {\min f\left( x \right)}\limits_{x \in {\mathbb {R}}}  = {1 \over 2}\).

Bài 17 trang 22 SGK Đại số và Giải tích 12 Nâng cao

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) \(f\left( x \right) = {x^2} + 2x - 5\) trên đoạn \(\left[ { - 2;3} \right]\);

b) \(f\left( x \right) = {{{x^3}} \over 3} + 2{x^2} + 3x - 4\) trên đoạn \(\left[ { - 4;0} \right]\);

c) \(f\left( x \right) = x + {1 \over x}\) trên đoạn \(\left( {0; + \infty } \right)\);

d) \(f\left( x \right) =  - {x^2} + 2x + 4\) trên đoạn \(\left[ {2;4} \right]\);

e) \(f\left( x \right) = {{2{x^2} + 5x + 4} \over {x + 2}}\) trên đoạn \(\left[ {0;1} \right]\);

f) \(f\left( x \right) = x - {1 \over x}\) trên đoạn \(\left( {0;2} \right]\);

Giải

a) \(D = \left[ { - 2;3} \right];f'\left( x \right) = 2x + 2;f'\left( x \right) = 0\)

\(\Leftrightarrow  x=- 1 \in \left[ { - 2;3} \right]\)

Ta có: \(f\left( { - 2} \right) =  - 5;f\left( { - 1} \right) =  - 6;f\left( 3 \right) = 10\).

Vậy: \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ { - 2;3} \right]}  =  - 6;\,\,\,\,\,\,\mathop {\max \,f\left( x \right) = 10}\limits_{x \in \left[ { - 2;3} \right]} \).

b)

\(D = \left[ { - 4;0} \right];\,f'\left( x \right) = {x^2} + 4x + 3;f'\left( x \right) = 0\)

\(\Leftrightarrow \left[ \matrix{
x = - 1 \in \left[ { - 4;0} \right] \hfill \cr 
x = - 3 \in \left[ { - 4;0} \right] \hfill \cr} \right.\)

Ta có: \(f\left( { - 4} \right) =  - {{16} \over 3};f\left( { - 1} \right) =  - {{16} \over 3};\)

\(f\left( { - 3} \right) =  - 4;f\left( 0 \right) =  - 4\)

Vậy \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ { - 4;0} \right]}  =  - {{16} \over 3};\,\,\mathop {\max \,f\left( x \right)}\limits_{x \in \left[ { - 4;0} \right]}  =  - 4\).

c) \(D = \left( {0; + \infty } \right);f'\left( x \right) = 1 - {1 \over {{x^2}}} = {{{x^2} - 1} \over {{x^2}}}\)với mọi \(x \ne 0,f'\left( x \right) = 0 \Leftrightarrow x =  \pm 1\)

\(x=1\in \left\{ {0; + \infty } \right.)\)

\(x=-1\not\in \left\{ {0; + \infty } \right.)\)

\(\mathop {\min \,\,f\left( x \right) = f\left( 1 \right)}\limits_{x \in \left( {0; + \infty } \right)}  = 2\). Hàm số không đạt giá trị lớn nhất trên khoảng \(\left( {0; + \infty } \right)\).

d) \(D = \left[ {2;4} \right];f'\left( x \right) =  - 2x + 2;f'\left( x \right) = 0 \)

\(\Leftrightarrow x = 1 \notin \left[ {2;4} \right]\)

Ta có: \(f\left( 2 \right) = 4;f\left( 4 \right) =  - 4\)

Vậy \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ {2;4} \right]}  =  - 4;\,\) \(\mathop {\max f\left( x \right)}\limits_{x \in \left[ {2;4} \right]}  = 4\).

e)

\(D = \left[ {0;1} \right];f'\left( x \right) = {{2{x^2} + 8x + 6} \over {{{\left( {x + 2} \right)}^2}}};f'\left( x \right) = 0\)

\(\Leftrightarrow \left[ \matrix{
x = - 1 \notin \left[ {0;1} \right] \hfill \cr 
x = - 3 \notin \left[ {0;1} \right] \hfill \cr} \right.\)

Ta có: \(f\left( 0 \right) = 2;f\left( 1 \right) = {{11} \over 3}\)

Vậy \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ {0;1} \right]}  = 2;\) \(\mathop {\max f\left( x \right)}\limits_{x \in \left[ {0;1} \right]}  = {{11} \over 3}\)

f) \(D = \left( {0;2} \right];f'\left( x \right) = 1 + {1 \over {{x^2}}} > 0\) với mọi \(x \in \left( {0;2} \right];f\left( 2 \right) = {3 \over 2}\)

\(\mathop {\,\max f\left( x \right)}\limits_{x \in \left[ {0;2} \right]}  = {3 \over 2}\) . Hàm số không đạt giá trị nhỏ nhất trên \(\left( {0;2} \right]\).

Bài 18 trang 22 SGK Đại số và Giải tích 12 Nâng cao

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) \(y = 2{\sin ^2}x + 2\sin x - 1\)

b) \(y = {\cos ^2}2x - \sin x\cos x + 4\)

Giải

a) Đặt \(t = \sin x, - 1 \le t \le 1\)

\(y = f\left( t \right) = 2{t^2} + 2t - 1\)

Ta tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( t \right)\) trên đoạn \(\left[ { - 1;1} \right]\). Đó cũng là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên \(\mathbb R\).

\(f'\left( t \right) = 4t + 2;f'\left( t \right) = 0 \Leftrightarrow t =  - {1 \over 2}\)

Ta có: \(f\left( { - 1} \right) =  - 1;f\left( { - {1 \over 2}} \right) =  - {3 \over 2};f\left( 1 \right) = 3\)

\(\mathop {\min \,\,f\left( t \right)}\limits_{t \in \left[ { - 1;1} \right]}  =  - {3 \over 2};\,\,\,\,\,\,\mathop {\max \,\,f\left( t \right)}\limits_{t \in \left[ { - 1;1} \right]}  = 3\)

Vậy \(\mathop {\min \,\,y}\limits_{x \in {\mathbb{R}}}  =  - {3 \over 2};\,\,\,\,\,\,\mathop {\max \,\,y}\limits_{x \in {\mathbb{R}}}  = 3\).

b) Ta có: \(y = 1 - {\sin ^2}2x - {1 \over 2}\sin 2x + 4\)

                  \(=  - {\sin ^2}2x - {1 \over 2}\sin 2x + 5\)

Đặt \(t = \sin 2x, - 1 \le t \le 1\)

\(y = f\left( t \right) =  - {t^2} - {1 \over 2}t + 5;f'\left( t \right) =  - 2t - {1 \over 2};\)

\(f'\left( t \right) = 0 \Leftrightarrow t =  - {1 \over 4} \in \left[ { - 1;1} \right]\)

Ta có: \(f\left( { - 1} \right) = {9 \over 2};f\left( { - {1 \over 4}} \right) = {{81} \over {16}};f\left( 1 \right) = {7 \over 2}\)

\(\mathop {\min \,\,f\left( t \right)}\limits_{t \in \left[ { - 1;1} \right]}  = {7 \over 2};\,\,\,\,\,\mathop {\max \,\,f\left( t \right)}\limits_{t \in \left[ { - 1;1} \right]}  = {{81} \over {16}}\)

Vậy \(\mathop {\min \,\,y}\limits_{x \in {\mathbb{R}}}  = {7 \over 2};\,\,\,\,\,\mathop {\max \,\,y}\limits_{x \in {\mathbb{R}}}  = {{81} \over {16}}\).

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác