Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
5 trên 1 phiếu

Giải bài tập Toán 12 Nâng cao

CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

Giải bài tập trang 153 bài 3 tích phân SGK Giải tích 12 Nâng cao. Câu 14: Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm...

 

Bài 14 Trang 153 SGK Đại số và Giải tích 12 Nâng cao

a) Một vật chuyển động với vận tốc \(v\left( t \right) = 1 - 2\sin 2t\,\,\left( {m/s} \right)\). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm \(t = 0\) (s) đến thời điểm \(t = {{3\pi } \over 4}\,\left( s \right)\).

b) Một vật chuyển động chậm dần với vận tốc \(v\left( t \right) = 160 - 10t\,\left( {m/s} \right)\). Tính quãng đường mà vật di chuyển được từ thời điểm t=0 đến thời điểm mà vật dừng lại. 

Giải.

a) Quãng đường vật di chuyển trong thời gian từ \(t=0\) (s) đến \(t = {{3\pi } \over 4}\left( s \right)\) là: \(S = \int\limits_0^{{{3\pi } \over 4}} {\left( {1 - 2\sin 2t} \right)dt}  = \left( {t + \cos 2t} \right)\mathop |\nolimits_0^{{{3\pi } \over 4}}  \)

\(= {{3\pi } \over 4} - 1\left( m \right)\)

b) Gọi \({t_0}\) là thời điểm vật dừng lại, khi đó:

\(v\left( {{t_0}} \right) = 0 \Leftrightarrow 160 - 10{t_0} = 0 \Leftrightarrow {t_0} = 16.\)      

Quãng đường vật di chuyển từ \(t=0\) đến \(t=16\) là

\(S = \int\limits_0^{16} {\left( {160t - 10t} \right)dt = \left( {160t - 5{t^2}} \right)\mathop |\nolimits_0^6 }  = 1280.\)

Bài 15 Trang 153 SGK Đại số và Giải tích 12 Nâng cao

Một vật đang chuyển động với vận tốc  10 m/s thì tăng tốc với gia tốc \(a = 3t + {t^2}\,\left( {m/{s^2}} \right)\). Tính quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tang tốc.

Giải

Gọi v(t) là vận tốc của vật. ta có : \(v'\left( t \right) = a\left( t \right) = 3t + {t^2}\)

Suy ra \(v\left( t \right) = {{3{t^2}} \over 2} + {{{t^3}} \over 3} + C.\) vì \(v(0)=10\) nên suy ra \(C=10\)

Vậy \(v\left( t \right) = {{3{t^2}} \over 2} + {{{t^3}} \over 3} + 10\)

Quãng đường vật đi được là:

\(S = \int\limits_0^{10} {\left( {{{3{t^2}} \over 2} + {{{t^3}} \over 3} + 10} \right)dt}  \)

\(= \left. {\left( {{{{t^3}} \over 2} + {{{t^4}} \over {12}} + 10t} \right)} \right|_0^{10} = {{4300} \over 3}\left( m \right).\)

Bài 16 Trang 153 SGK Đại số và Giải tích 12 Nâng cao

Một viên đạn được bắn lên theo phương thẳng đứng với vận tốc ban đầu 25 m/s. gia tốc trọng trường là \(9,8\,m/{s^2}\).

a) Sau bao lâu viên đạn đạt tới vận tốc cao nhất.

b) Tính quãng đường viên đạn đi được tính từ lúc bắn lên cho đến khi rơi xuống đất.

Giải

a) Gọi v(t) là vận tốc của viên đạn. ta có   

Suy ra \(v\left( t \right) =  - 9,8t + C.\) vì \(v(0)=25\) nên suy ra \(C=25\)

Vậy \(v\left( t \right) =  - 9,8t + 25.\)

Gọi T là thời điểm viên đạn đạt tốc độ cao nhất. tại đó vận tốc  viên đạn có vận tốc bằng 0. Vậy \(v(T)=0\) suy ra \(T = {{25} \over {9,8}} \approx 2,55\,\) (giây).

b) Quãng đường viên đi được cho tới thời điểm \(T=2,55\) (giây) là:

 \(S = \int\limits_0^T {\left( { - 9,8t + 25} \right)dt}  \)

\(=  - 9,8{{{T^2}} \over 2} + 25T \approx 31,89\,\left( m \right)\)

Vậy quãng đường viên đạn đi được cho đến khi rơi là xuống đất là \(2S = 63,78\left( m \right).\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác