Bài 4 trang 121 - SGK Giải tích 12
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh trục \(Ox\):
a) \(y = 1 - x^2\), \(y = 0\) ;
b) \(y = cosx, y = 0, x = 0, x = π\) ;
c) \(y = tanx, y = 0, x = 0\), \(x=\frac{\pi }{4}\) ;
Giải
a) Phương trình hoành độ giao điểm \(1 - x^2= 0 ⇔ x = ±1\).
Thể tích cần tìm là :
\(V=\pi \int_{-1}^{1}(1-x^{2})^{2}dx=2\pi \int_{0}^{1}(x^{4}-2x^{2}+1)dx\)
\(=2\pi \left (\frac{x^{4}}{5}- \frac{2}{3}x^{3}+x \right )|_{0}^{1}=2\pi\left ( \frac{1}{5}-\frac{2}{3}+1 \right )=\frac{16}{15}\pi\)
b) Thể tích cần tìm là :
\(V= \pi \int_{0}^{\pi }cos^{2}xdx =\frac{\pi }{2}\int_{0}^{\pi}(1+cos2x)dx\)
\(=\frac{\pi }{2}\left (x+\frac{1}{2}sin2x \right )|_{0}^{\pi }=\frac{\pi }{2}\pi =\frac{\pi ^{2}}{2}\)
c) Thể tích cần tìm là :
\(V=\pi\int_{0}^{\frac{\pi }{4}}tan^{2}xdx=\pi\int_{0}^{\frac{\pi }{4} }\left (\frac{1}{cos^{2}x}-1 \right )dx\)
\(=\pi \left (tanx-x \right )|_{0}^{\frac{\pi }{4}}=\pi (1-\frac{\pi }{4})\).
Bài 5 trang 121 SGK Giải tích 12
Cho tam giác vuông \(OPM\) có cạnh \(OP\) nằm trên trục \(Ox\). Đặt \(\widehat {POM} = \alpha \)
và \(OM = R\), \(\left( {0 \le \alpha \le {\pi \over 3},R > 0} \right)\)
Gọi là khối tròn xoay thu được khi quay tam giác đó xung quanh \(Ox\) (H.63).
a) Tính thể tích của theo \(α\) và \(R\).
b) Tìm \(α\) sao cho thể tích là lớn nhất.
Giải
a) Hoành độ điểm \(P\) là :
\(x_p= OP = OM. cos α = R.cosα\)
Phương trình đường thẳng \(OM\) là \(y = tanα.x\). Thể tích \(V\) của khối tròn xoay là:
\(V = \pi \int\limits_0^{R\cos \alpha } {{{\tan }^2}\alpha {{{x^3}} \over 3}\left| {_0^{R\cos \alpha } = {{\pi .{R^3}} \over 3}(\cos \alpha - {{\cos }^3}} \right.} \alpha )\)
b) Đặt \(t = cosα \Rightarrow t ∈ \left[ {{1 \over 2};1} \right]\). \(\left( \text{ vì }{\alpha \in \left[ {0;{\pi \over 3}} \right]} \right)\), \(α = arccos t\).
Ta có :
\(\eqalign{
& V = {{\pi {R^3}} \over 3}(t - {t^3});V' = {{\pi {R^3}} \over 3}(1 - 3{t^2}) \cr
& V' = 0 \Leftrightarrow \left[ \matrix{
t = {{\sqrt 3 } \over 3} \hfill \cr
t = {{ - \sqrt 3 } \over 3}\text{ (loại)} \hfill \cr} \right. \cr} \)
Từ đó suy ra \(V\) lớn nhất bằng \({{2\sqrt 3 \pi R^3} \over 27}\) \(\Leftrightarrow t = {{\sqrt 3 } \over 3} \Leftrightarrow \alpha = \arccos {{\sqrt 3 } \over 3}\)
Giaibaitap.me
Giải bài tập trang 126 ôn tập chương III - Nguyên hàm - Tích phân và ứng dụng Giải tích 12. Câu 1: a) Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng...
Giải bài tập trang 126, 127 ôn tập chương III - Nguyên hàm - Tích phân và ứng dụng Giải tích 12. Câu 4: Tính...
Giải bài tập trang 127, 128 ôn tập chương III - Nguyên hàm - Tích phân và ứng dụng SGK Giải tích 12. Câu 1: Tính...
Giải bài tập trang 133, 134 bài 1 số phức SGK Giải tích 12. Câu 1: Tìm phần thực và phần ảo của số phức z, biết...