Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
2.8 trên 4 phiếu

Giải bài tập Toán 12

CHƯƠNG I. KHỐI ĐA DIỆN

Giải bài tập trang 25, 26 bài 3 khái niệm về thể tích của khối đa diện SGK Hình học 12. Câu 4: Chứng minh rằng...

Bài 4 trang 25 sgk hình học 12

Cho hình chóp \(S.ABC\). Trên các đoạn thẳng \(SA, SB, SC\) lần lượt lấy ba điểm \(A’, B’, C’\) khác với \(S\). Chứng minh rằng

\({{{V_{S.A'B'C'}}} \over {{V_{S.ABC}}}} = {{SA'} \over {SA}} \cdot {{SB'} \over {SB}} \cdot {{SC'} \over {SC}}\)

Giải

Gọi \(h\) và \(h’\) lần lượt là chiều cao hạ từ \(A, A’\) đến mặt phẳng \((SBC)\).

Gọi \(S_1\) và \(S_2\) theo thứ tự là diện tích các tam giác \(SBC\) và \(SB’C’\).

Khi đó ta có \({{h'} \over h} = {{SA'} \over {SA}}\) 

và \({{{1 \over 2}sin(B'SC').SB'.SC'} \over {{1 \over 2}sin(BSC).SB.SC}} = {{SB'} \over {SB}}.{{SC'} \over {SC}}\)

Suy ra \({{{V_{S.A'B'C'}}} \over {{V_{S.ABC}}}} = {{{V_{A'.SB'C'}}} \over {{V_{A.SBC}}}} = {{{1 \over 3}h'{S_2}} \over {{1 \over 3}h{S_1}}} = {{SA'} \over {SA}} \cdot {{SB'} \over {SB}} \cdot {{SC'} \over {SC}}\) 

Đó là điều phải chứng minh.

Bài 5 trang 26 sgk hình học 12

Cho tam giác \(ABC\) vuông cân ở \(A\) và \(AB = a\). Trên đường thẳng qua \(C\) và vuông góc với mặt phẳng \((ABC)\) lấy điểm \(D\) sao cho \(CD = a\). Mặt phẳng qua \(C\) vuông góc với \(SD\), cắt \(BD\) tại \(F\) và cắt \(AD\) tại \(E\). Tính thể tích khối tứ diện \(CDEF\) theo \(a\).

Giải: 

\(\left.\begin{matrix} BA \perp CD& \\ BA \perp CA& \end{matrix}\right\}\)\( \Rightarrow BA\bot (ADC)\) \(\Rightarrow BA \bot CE\)

Mặt khác \(BD \bot (CEF) \Rightarrow BD \bot CE\).

Từ đó suy ra

\(CE \bot (ABD) \Rightarrow CE ⊥ EF, CE \bot AD\).

Vì tam giác \(ACD\) vuông cân, \(AC= CD= a\) nên \(CE=\frac{AD}{2}=\frac{a\sqrt{2}}{2}\)

Ta có \(BC = a\sqrt{2}\), \(BD = \sqrt{2a^{2}+a^{2}}=a\sqrt{3}\)

Để ý rằng \(CF\cdot BD = DC\cdot BC\) nên \(CF=\frac{a^{2}\sqrt{2}}{a\sqrt{3}}=a\sqrt{\frac{2}{3}}\)

Từ đó suy ra 

\(EF= \sqrt{CF^{2}-CE^{2}}=\sqrt{\frac{2}{3}a^{2}-\frac{a^{2}}{2}}=\frac{\sqrt{6}}{6}a\).

\(DF=\sqrt{DC^{2}-CF^{2}}=\sqrt{a^{2}-\frac{2}{3}a^{2}}=\frac{\sqrt{3}}{3}a\).

Từ đó suy ra \(S_{\Delta CEF}=\frac{1}{2}FE\cdot EC=\frac{1}{2}\frac{a\sqrt{6}}{6}\cdot \frac{a\sqrt{2}}{2}=\frac{a^{2}\sqrt{3}}{12}\)

Vậy \(V_{D.CEF}=\frac{1}{3}S_{\Delta CEF}\cdot DF=\frac{1}{3}\cdot \frac{a^{2}\sqrt{3}}{12}\cdot \frac{a\sqrt{3}}{3}=\frac{a^{3}}{36}.\)

Bài 6 trang 26 sgk hình học 12

Cho hai đường thẳng chéo nhau \(d\) và \(d’\). Đoạn thằng \(AB\) có độ dài \(a\) trượt trên \(d\), đoạn thẳng \(CD\) có độ dài \(b\) trượt trên \(d’\). Chứng minh rằng khối tứ diện \(ABCD\) có thể tích không đổi.

Giải: 

Gọi \(h\) là độ dài đường vuông góc chung của \(d\) và \(d’\), \(α\) là góc giữa hai đường thẳng \(d\) và \(d’\). Qua \(B, A, C\) dựng hình bình hành \(BACF\). Qua \(A,C, D\) dựng hình bình hành \(ACDE\).

Khi đó \(CFD.ABE\) là một hình lăng trụ tam giác. Ta có:

\(V_{DABC}=V_{DFCB}=V_{BCDF}\)

= \(\frac{1}{3}\)\(V_{CFD.ABE}\)

= \(\frac{1}{3}h\)\(S_{FCD}\)= \(\frac{1}{3}h.\) \(\frac{1}{2}ab. sinα\)

=\(\frac{1}{6}.h. ab. sinα\) (là một số không đổi).

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me