Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 12

CHƯƠNG III. NGUYÊN HÀM - TÍCH PHÂN VÀ ỨNG DỤNG

Giải bài tập trang 172, 173 bài 1 nguyên hàm Sách bài tập (SBT) Giải tích 12. Câu 3.7: Bằng cách biến đổi các hàm số lượng giác, hãy tính...

Bài 3.7 trang 172 sách bài tập (SBT) - Giải tích 12

Bằng cách biến đổi các hàm số lượng giác, hãy tính:

a) \(\int {{{\sin }^4}x} dx\)                                                         

b) \(\int {{1 \over {{{\sin }^3}x}}dx} \)

c) \(\int {{{\sin }^3}x{{\cos }^4}xdx} \)                               

d) \(\int {{{\sin }^4}x{{\cos }^4}xdx} \)

e) \(\int {{1 \over {\cos x{{\sin }^2}x}}} dx\)                                               

g)\(\int {{{1 + \sin x} \over {1 + \cos x}}} dx\)

Hướng dẫn làm bài

a) \({3 \over 8}x - {{\sin 2x} \over 4} + {{\sin 4x} \over {32}} + C\)

HD: \({\sin ^4}x = {{{{(1 - \cos 2x)}^2}} \over 4} = {1 \over 4}({3 \over 2} - 2\cos 2x + {1 \over 2}\cos 4x)\)

b)\({1 \over 2}\ln |\tan {x \over 2}| - {{\cos x} \over {2{{\sin }^2}x}} + C\)

Hd:  Đặt u = cot x

c) \({\cos ^5}x({{{{\cos }^2}x} \over 7} - {1 \over 5}) + C\)  . HD: Đặt u = cos x

d) \({1 \over {128}}(3x - \sin 4x + {1 \over 8}\sin 8x) + C\)

HD: \({\sin ^4}x{\cos ^4}x = {1 \over {{2^4}}}{({\sin ^2}2x)^2} = {1 \over {{2^6}}}{(1 - \cos 4x)^2}\)

e) \(\ln |\tan ({x \over 2} + {\pi  \over 4})| - {1 \over {\sin x}} + C\) .

HD:\({1 \over {\cos x{{\sin }^2}x}} = {{{{\sin }^2}x + {{\cos }^2}x} \over {\cos x{{\sin }^2}x}}\)

g) \(\tan {x \over 2} - 2\ln |\cos {x \over 2}| + C\) . HD:    \({{1 + \sin x} \over {1 + \cos x}} = {1 \over {2{{\cos }^2}{x \over 2}}} + {{\sin {x \over 2}} \over {\cos {x \over 2}}}\)

 

Bài 3.8 trang 172 sách bài tập (SBT) - Giải tích 12

Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số  \(f(x) = {1 \over {1 + \sin x}}\) ?

a)\F(x) = 1 - \cot ({x \over 2} + {\pi  \over 4})\)                                               

b) \(G(x) = 2\tan {x \over 2}\)

c) \(H(x) = \ln (1 + \sin x)\)                                               

d) \(K(x) = 2(1 - {1 \over {1 + \tan {x \over 2}}})\)

Hướng dẫn làm bài

a) \(F(x) = 1 - \cot ({x \over 2} + {\pi  \over 4})\)                                                   

d) \(K(x) = 2(1 - {1 \over {1 + \tan {x \over 2}}})\)

 


Bài 3.9 trang 173 sách bài tập (SBT) - Giải tích 12

Tính các nguyên hàm sau đây:

a) \(\int {(x + \ln x){x^2}dx} \)                                                         b) \(\int {(x + {{\sin }^2}x)\sin xdx} \)

c) \(\int {(x + {e^x}){e^{2x}}dx} \)                                                         d)\(\int {(x + \sin x){{dx} \over {{{\cos }^2}x}}} \)

e) \(\int {{{{e^x}\cos x + ({e^x} + 1)\sin x} \over {{e^x}\sin x}}} dx\)

Hướng dẫn làm bài

a) \({{{x^4}} \over 4} + {{{x^3}} \over 3}(\ln x - {1 \over 3}) + C\) . HD: Đặt  \(u = x + \ln x;dv = {x^2}dx\)

b) \(\sin x - (x + 1)\cos x + {1 \over 3}{\cos ^3}x + C\)

HD: Đặt  \(u = x + {\sin ^2}x,dv = \sin xdx\)

c) \({{{e^{2x}}} \over {12}}(4{e^x} + 6x - 3) + C\)  . HD: Đặt \(u = x + {e^x},dv = {e^{2x}}dx\)

d) \(x\tan x + \ln |\cos x| + {1 \over {\cos x}} + C\). HD: Đặt  \(u = x + \sin x,dv = d(\tan x)\)

e) \(\ln |{e^x}\sin x| - {e^{ - x}} + C\) . HD: \(d({e^x}\sin x) = ({e^x}\sin x + {e^x}\cos x)dx\)

 

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác