Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Giải sách bài tập Toán 12

CHƯƠNG III. NGUYÊN HÀM - TÍCH PHÂN VÀ ỨNG DỤNG

Giải bài tập trang 178, 179 bài 2 tích phân Sách bài tập (SBT) Giải tích 12. Câu

Bài 3.14 trang 178 sách bài tập (SBT) - Giải tích 12

Chứng minh rằng: \(\mathop {\lim }\limits_{x \to  + \infty } \int\limits_0^1 {{x^n}\sin \pi xdx = 0} \).

Hướng dẫn làm bài

 Với \(x \in {\rm{[}}0;1]\) , ta có  \(0 \le {x^n}\sin \pi x \le {x^n}\) . Do đó:

                      \(0 \le \int\limits_0^1 {{x^n}\sin \pi xdx}  \le \int\limits_0^1 {{x^n}dx = {1 \over {n + 1}}} \)

Áp dụng quy tắc chuyển qua giới hạn trong bất đẳng thức, ta được điều phải chứng minh.

 


Bài 3.15 trang 179 sách bài tập (SBT) - Giải tích 12

Chứng minh rằng hàm số f(x) cho bởi \(f(x) = \int\limits_0^x {{t \over {\sqrt {1 + {t^4}} }}} dt,x \in R\)  là hàm số chẵn.

Hướng dẫn làm bài

Đặt t = - s trong tích phân:  \(f( - x) = \int\limits_0^{ - x} {{t \over {\sqrt {1 + {t^4}} }}} dt\) , ta được:\(f( - x) = \int\limits_0^{ - x} {{t \over {\sqrt {1 + {t^4}} }}} dt = \int\limits_0^x {{s \over {\sqrt {1 + {s^4}} }}} ds = f(x)\)

 


Bài 3.16 trang 179 sách bài tập (SBT) - Giải tích 12

Giả sử hàm số f(x) liên tục trên đoạn [-a; a]. Chứng minh rằng:                              

\(\int\limits_{ - a}^a {f(x)dx = } \left\{ {\matrix{{2\int\limits_0^a {f(x)dx,(1)} } \cr {0,(2)} \cr} } \right.\)

(1) : nếu f là hàm số chẵn

(2): nếu f là hàm số lẻ.

Áp dụng để tính: \(\int\limits_{ - 2}^2 {\ln (x + \sqrt {1 + {x^2}} } )dx\)

Hướng dẫn làm bài

Giả sử hàm số f(x) là hàm số chẵn trên đoạn [-a; a], ta có:

                      \(\int\limits_{ - a}^a {f(x)dx = \int\limits_{ - a}^0 {f(x)dx + \int\limits_0^a {f(x)dx} } } \)

Đổi biến x = - t đối với tích phân \(\int\limits_{ - a}^0 {f(x)dx} \) , ta được:

 \(\int\limits_{ - a}^0 {f(x)dx =  - \int\limits_a^0 {f( - t)dt = \int\limits_0^a {f(t)dt = \int\limits_0^a {f(x)dx} } } } \)

Vậy \(\int\limits_{ - a}^a {f(x)dx = 2\int\limits_0^a {f(x)dx} } \)

Trường hợp sau chứng minh tương tự. Áp dụng:

Vì \(g(x) = \ln (x + \sqrt {1 + {x^2}} )\)  là hàm số lẻ trên đoạn [-2; 2] nên    \(\int\limits_{ - 2}^2 {g(x)dx = 0}\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác