Bài 1.5 trang 8 Sách bài tập (SBT) Giải tích 12
Xác định m để hàm số sau:
a) y=mx−4x−mđồng biến trên từng khoảng xác định;
b) y=−mx−5m+4x+m nghịch biến trên từng khoảng xác định;
c) y=−x3+mx2−3x+4 nghịch biến trên ;
d) y=x3−2mx2+12x−7 đồng biến trên R.
Hướng dẫn làm bài:
a) Tập xác định: D = R\{m}
Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)khi và chỉ khi:
y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2
b) Tập xác định: D = R\{m}
Hàm số nghịch biến trên từng khoảng khi và chỉ khi:
y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0
[m<1m>4
c) Tập xác định: D = R
Hàm số nghịch biến trên R khi và chỉ khi:
y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3
d) Tập xác định: D = R
Hàm số đồng biến trên R khi và chỉ khi:
y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3
Bài 1.6 trang 8 Sách bài tập (SBT) Giải tích 12
Chứng minh các phương trình sau có nghiệm duy nhất
a) 3(cosx−1)+2sinx+6x=0
b) 4x+cosx−2sinx−2=0
c) −x3+x2−3x+2=0
d) x5+x3−7=0
Hướng dẫn làm bài
a) Đặt y = 3(cos x – 1) + 2sin x + 6
Hàm số xác định, liên tục và có đạo hàm tại mọi x ∈ R
Ta có: y( ) = 0 và ý = -3sin x + 2cos x + 6 >0, x ∈ R.
Hàm số đồng biến trên R và có một nghiệm x=π
Vậy phương trình đã cho có một nghiệm duy nhất.
b) Đặt y=4x+cosx−2sinx−2
Hàm số xác định, liên tục và có đạo hàm tại mọi x ∈ R
Ta có: y(0) = 1 – 2 = -1 < 0 ; y(π)=4π−3>0 .
Hàm số liên tục trên [0;π] và y’(0) < 0 nên tồn tại x0∈(0;π) sao cho y(x0)=0 .
Suy ra phương trình có một nghiệm x0 .
c) Đặt y = – x3 + x2 – 3x + 2
Hàm số xác định, liên tục và có đạo hàm trên R.
Ta có: y’ = – x2 + 2x – 3 < 0, y(π)=4π−3>0, x ∈ R.
Vì a = -3 < 0 và . Suy ra y nghịch biến trên R.
Mặt khác y(-1) = 1 + 1 +3 + 2 = 7 > 0
y(1) = -1 +1 – 3 + 2 = -1 < 0
Hàm số liên tục trên [-1; 1] và y(-1)y(1) < 0 cho nên tồn tại x0∈[−1;1] sao cho y(x0)=0 .
Suy ra phương trình đã cho có đúng một nghiệm.
d) Đặt y = x5 + x3 – 7
Hàm số xác định, liên tục và có đạo hàm trên R.
Ta có: y(0) = -7 < 0 ; y(2) = 32 + 8 – 7 = 33 > 0
Hàm số liên tục trên [0; 2] và y(0) y(2) < 0 cho nên tồn tại x0∈(0;2) sao cho y(x0)=0
Mặt khác y′=5x4+3x2=x2(5x2+3)≥0,∀x∈R
=> Hàm số đồng biến trên (−∞;+∞).
Suy ra phương trình đã cho có đúng một nghiệm.
Bài 1.7 trang 8 Sách bài tập (SBT) Giải tích 12
Chứng minh phương trình x5−x2−2x−1=0 có nghiệm duy nhất
(Đề thi đại học năm 2004)
Hướng dẫn làm bài:
Trước hết cần tìm điều kiện của nghiệm phương trình (tức là xem nghiệm phương trình, nếu có, phải nằm trong khoảng nào). Ta nhận xét
x5 – x2 – 2x – 1 = 0 ⇔ x5 = (x + 1)2 0 => x ≥ 0
=> (x + 1)2 1 => x5 1 => x 1
Vậy, nếu có, nghiệm của phương trình phải thuộc [1;+∞] .
Xét hàm số f(x)=x5−x2−2x−1 ta thấy f(x) liên tục trên R
Mặt khác, f(1)=−3<0,f(2)=23>0
Vì f(x) liên tục trên [1; 2] và f(1) f(2) < 0 nên tồn tại x0∈(1;2) sao cho f(x0)=0
Ta có: f’(x) = 5x4 – 2x – 2 = (2x4 – 2x) + (2x4 – 2) + x4
= 2x(x3 – 1) + 2(x4 – 1) + x4 > 0 , ∀x≥1
Suy ra f(x) đồng biến trên [1;+∞]
Giaibaitap.me
Giải bài tập trang 8,9 bài 1 sự đồng biến, nghịch biến của hàm số Sách bài tập (SBT) Giải tích 12. Câu 1.8: Chứng minh các bất đẳng thức sau...
Giải bài tập trang 15 bài 2 cực trị hàm số Sách bài tập (SBT) Giải tích 12. Câu 1.14: Tìm cực trị của các hàm số sau...
Giải bài tập trang 15,16 bài 2 cực trị hàm số Sách bài tập (SBT) Giải tích 12. Câu 1: Tìm cực trị của các hàm số sau...
Giải bài tập trang 16 bài 2 cực trị hàm số Sách bài tập (SBT) Giải tích 12. Câu 1.17: Khi đó, hàm số đạt cực tiểu hay đạt cực đại? Tính cực trị tương ứng...