Bài 1 trang 122 SGK Hình học 12 Nâng cao
Cho hình lăng trụ ABC.A’B’C’ với cạnh bên không vuông góc với mặt đáy. Gọi \(\left( \alpha \right)\) là mặt phẳng vuông góc với các cạnh bên của hình lăng trụ và cắt chúng tại P, Q, R. Phép tịnh tiến theo vectơ \(\overrightarrow {AA'} \) biến tam giác PQR thành tam giác P’Q’R’.
a) Chứng minh rằng thể tích V của hình lăng trụ đã cho bằng thể tích của hình lăng trụ PQR.P’Q’R’.
b) Chứng minh rằng \(V = {S_{PQR}}.AA'\), trong đó \({S_{PQR}}\) là diện tích tam giác PQR.
Giải
a) Mp(PQR) chia khối lăng trụ ABC.A’B’C’ thành 2 khối đa diện \({H_1}\) và \({H_2}\) với \({H_1}\) chứa \(\Delta ABC\), \({H_2}\) chứa \(\Delta A'B'C'\) Mp(A’B’C’) chia khối lăng trụ PQR.P’Q’R’ thành hai khối đa diện \({H_2}\) và \({H_3}\) với \({H_3}\) chứa \(\Delta P'Q'R'.\)
Gọi \({V_1},{V_2},{V_3}\) lần lượt là thể tích của các khối đa diện \({H_1},{H_2},{H_3}\) ta có:
\({V_{ABC.A'B'C'}} = {V_1} + {V_2},{V_{PQR.P'Q'R'}} = {V_2} + {V_3}.\)
Phép tịnh tiến \(\overrightarrow {AA'} :\)
\(\eqalign{
& {T_{\overrightarrow {AA'} }}:\Delta ABC \to \Delta A'B'C' \cr
& {T_{\overrightarrow {AA'} }}:\Delta PQR \to \Delta P'Q'R' \cr} \)
Suy ra \({T_{\overrightarrow {AA'} }}:{H_1} \to {H_3}\) do đó \({V_1} = {V_3}.\)
Vậy \({V_{ABC.A'B'C'}} = {V_{PQR.P'Q'R'}}.\)
b) Vì lăng trụ PQR.P’Q’R’ là lăng trụ đứng nên có chiều cao PP’ = AA’ nên
\({V_{ABC.A'B'C'}} = {V_{PQR.P'Q'R'}} = {S_{PQR}}.AA'.\)
Bài 2 trang 122 SGK Hình học 12 Nâng cao
Cho tứ diện ABCD có thể tích V. Hãy tính thể tích hình tứ diện có đỉnh là trọng tâm các mặt của tứ diện đã cho.
Giải
Gọi G là trọng tâm tứ diện ABCD và A’, B’, C’, D’ lần lượt là trọng tâm các tam giác BCD, ACD, ABD, ABC. Gọi \(V\left( {G; - {1 \over 3}} \right)\) là phép vị tự tâm G tỉ số \(k = - {1 \over 3}.\) Ta có: \(\overrightarrow {GA'} = - {1 \over 3}\overrightarrow {GA} .\)
Suy ra: \(V\left( {G; - {1 \over 3}} \right):A \to A'.\)
Tương tự: \(B \to B'\)
\(\eqalign{
& C \to C' \cr
& D \to D'. \cr} \)
Do đó: \(V:ABCD \to A'B'C'D'.\) Vậy \({V_{A'B'C'D'}} = {\left| k \right|^3}{V_{ABCD}} = {1 \over {27}}V.\)
Bài 3 trang 122 SGK Hình học 12 Nâng cao
Cho hình hộp ABCD.A’B’C’D’ có thể tích V. Hãy tính thể tích của tứ diện ACB’D’.
Giải
Các tứ diện BACB’, C’B’CD’, DD’AC, AA’B’D’ đều có thể tích bằng \({1 \over 6}V.\)
Do đó: \({V_{ACB'D'}} = V - 4.{V \over 6} = {V \over 3}.\)
Bài 4 trang 122 SGK Hình học 12 Nâng cao
Chứng minh rằng trung điểm các cạnh của một hình tứ diện đều là các đỉnh của một hình tám mặt đều. Hãy so sánh thể tích của tứ diện đều đã cho và thể tích của hình tám mặt đều đó.
Giải
Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, CD, AC, BD, AD, BC của tứ diện đều ABCD thì các tam giác MPR, MRQ, MQS, MSP, NPR, NRQ, NQS, NSP là những tam giác đều, vậy ta có hình tám mặt đều MNPQRS.
Vì các tứ diện AMPR, BMQS, CPSN, DQNR đều là những tứ diện đồng dạng với tứ diện ABCD với tỉ số \(k = {1 \over 2}\) nên ta có thể tích bằng \({V \over 8}.\)
Suy ra \({V_{MPRQSN}} = V - 4{V \over 8} = {V \over 2}.\)
Giaibaitap.me
Giải bài tập trang 123, 124 Ôn tập cuối năm SGK Hình học 12 Nâng cao. Câu 5: Cho hình vuông ABCD nội tiếp đường tròn (O; R). Gọi H là hình gồm các điểm của hình tròn (O; R) nhưng không nằm trong hình vuông....
Giải bài tập trang 124 Ôn tập cuối năm SGK Hình học 12 Nâng cao. Câu 9: Trong không gian tọa độ Oxyz cho đường thẳng...
Giải bài tập trang 124, 125, 126, 127, 128, 129 ôn tập cuối năm SGK Hình học 12 Nâng cao. Câu 1: Cho H là hình chóp tứ giác đều ...
Giải một số đề kiểm tra trang 129, 130 ôn tập cuối năm SGK Hình học 12 nâng cao. Câu 1: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a...