Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Toán 10 Cánh Diều

Chương 4. Hệ thức lượng trong tam giác. Vectơ

Giải bài tập 1 trang 97; 2; 3; 4; 5; 6; 7; 8 trang 98 sách giáo khoa Toán lớp 10 Cánh diều tập 1 - Bài 6: Tích vô hướng của hai vectơ

Bài 1 trang 97 SGK Toán lớp 10 tập 1 Cánh diều:

Nếu hai điểm M, N thỏa mãn \(\overrightarrow {MN} .\overrightarrow {NM}  =  - 4\) thì độ dài đoạn thẳng MN bằng bao nhiêu?

A. MN = 4

B. MN = 2

C. MN = 16

D. MN = 256

Lời giải:

Đáp án đúng là: B.

Ta có:

\(\overrightarrow {MN} .\overrightarrow {NM}  = \left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {NM} } \right|.\cos (\overrightarrow {MN} ,\overrightarrow {NM} ) = M{N^2}.\cos {180^o} =  - M{N^2}\)

Do đó: \( - M{N^2} =  - 4 \Leftrightarrow MN = 2.\)

Bài 2 trang 98 SGK Toán lớp 10 tập 1 Cánh diều:

Phát biểu nào sau đây là đúng?

A. Nếu \(\overrightarrow a ,\overrightarrow b \) khác \(\overrightarrow 0 \) và \((\overrightarrow a ,\overrightarrow b ) < {90^o}\) thì \(\overrightarrow a .\overrightarrow b  < 0\)

B. Nếu \(\overrightarrow a ,\overrightarrow b \) khác \(\overrightarrow 0 \) và \((\overrightarrow a ,\overrightarrow b ) > {90^o}\) thì \(\overrightarrow a .\overrightarrow b  > 0\)

C. Nếu \(\overrightarrow a ,\overrightarrow b \) khác \(\overrightarrow 0 \) và \((\overrightarrow a ,\overrightarrow b ) < {90^o}\) thì \(\overrightarrow a .\overrightarrow b  > 0\)

D. Nếu \(\overrightarrow a ,\overrightarrow b \) khác \(\overrightarrow 0 \) và \((\overrightarrow a ,\overrightarrow b ) \ne {90^o}\) thì \(\overrightarrow a .\overrightarrow b  < 0\)

Lời giải:

Ta có: \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos (\overrightarrow a ,\overrightarrow b )\)

+) \((\overrightarrow a ,\overrightarrow b ) < {90^o} \Rightarrow \cos (\overrightarrow a ,\overrightarrow b ) > 0 \Leftrightarrow \overrightarrow a .\overrightarrow b  > 0\)

Vậy A sai, C đúng, D sai.

+) \((\overrightarrow a ,\overrightarrow b ) > {90^o} \Rightarrow \cos (\overrightarrow a ,\overrightarrow b ) < 0 \Leftrightarrow \overrightarrow a .\overrightarrow b  < 0\)

Vậy B sai.

Chọn C. 

Bài 3 trang 98 SGK Toán lớp 10 tập 1 Cánh diều:

Tính \(\overrightarrow a .\overrightarrow b \) trong mỗi trường hợp sau:

a) \(\left| {\overrightarrow a } \right| = 3,\;\left| {\overrightarrow b } \right| = 4,\;(\overrightarrow a ,\overrightarrow b ) = {30^o}\)

b) \(\left| {\overrightarrow a } \right| = 5,\;\left| {\overrightarrow b } \right| = 6,\;(\overrightarrow a ,\overrightarrow b ) = {120^o}\)

c) \(\left| {\overrightarrow a } \right| = 2,\;\left| {\overrightarrow b } \right| = 3,\;\overrightarrow a \) và \(\overrightarrow b \) cùng hướng.

d) \(\left| {\overrightarrow a } \right| = 2,\;\left| {\overrightarrow b } \right| = 3,\;\overrightarrow a \) và \(\overrightarrow b \) ngược hướng

Lời giải:

a) Ta có: \(\overrightarrow a .\overrightarrow b  = 3.4.\cos {30^o} = 12.\frac{{\sqrt 3 }}{2} = 6\sqrt 3 \)

b) Ta có: \(\overrightarrow a .\overrightarrow b  = 5.6.\cos {120^o} = 30.\left( { - \frac{1}{2}} \right) =  - 15\)

c) Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng nên \((\overrightarrow a ,\overrightarrow b ) = {0^o}\)

\(\overrightarrow a .\overrightarrow b  = 2.3.\cos {0^o} = 6.1 = 6\)

d) Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng nên \((\overrightarrow a ,\overrightarrow b ) = {180^o}\)

\(\overrightarrow a .\overrightarrow b  = 2.3.\cos {180^o} = 6.( - 1) =  - 6\)

Bài 4 trang 98 SGK Toán lớp 10 tập 1 Cánh diều:

Cho hình vuông ABCD cạnh a. Tính các tích vô hướng sau:

a) \(\overrightarrow {AB} .\overrightarrow {AC} \)

b) \(\overrightarrow {AC} .\overrightarrow {BD} \)

Phương pháp:

Tính \(\overrightarrow {AB} .\overrightarrow {AC} \) bằng công thức \(\overrightarrow {AB} .\overrightarrow {AC}  = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos (\overrightarrow {AB} ,\overrightarrow {AC} ) = AB.AC.\cos \widehat {BAC}\)

Lời giải:

a) Ta có: \(AC = \sqrt {A{B^2} + A{D^2}}  = \sqrt {2{a^2}}  = a\sqrt 2 \)

\( \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = a.a\sqrt 2 .\cos \widehat {BAC} = {a^2}\sqrt 2 \cos {45^o} = {a^2}.\)

b) Dễ thấy: \(AC \bot BD \Rightarrow (\overrightarrow {AC} ,\overrightarrow {BD} ) = {90^o}\)

\( \Rightarrow \overrightarrow {AC} .\overrightarrow {BD}  = AC.BD.\cos {90^o} = AC.BD.0 = 0.\)

Bài 5 trang 98 SGK Toán lớp 10 tập 1 Cánh diều:

Cho tam giác ABC. Chứng minh: \(A{B^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA}  = 0\)

Lời giải:

\(\begin{array}{l}A{B^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA}  = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA} \\ = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA} ) = \overrightarrow {AB} (\overrightarrow {AC}  + \overrightarrow {CA} ) = \overrightarrow {AB} .\overrightarrow 0  = 0.\end{array}\)

Bài 6 trang 98 SGK Toán lớp 10 tập 1 Cánh diều:

Cho tam giác nhọn ABC, kẻ đường cao AH. Chứng minh rằng:

a) \(\overrightarrow {AB} .\overrightarrow {AH}  = \overrightarrow {AC} .\overrightarrow {AH} \)

b) \(\overrightarrow {AB} .\overrightarrow {BC}  = \overrightarrow {HB} .\overrightarrow {BC} \)

Lời giải:

Do AH là đường cao của tam giác ABC nên: \(AH \bot CB \Rightarrow (\overrightarrow {AH} ,\overrightarrow {CB} ) = {90^o} \Leftrightarrow \cos (\overrightarrow {AH} ,\overrightarrow {CB} ) = 0 \Leftrightarrow \overrightarrow {AH} .\overrightarrow {CB}  = 0\)

a) \(\overrightarrow {AB} .\overrightarrow {AH}  - \overrightarrow {AC} .\overrightarrow {AH}  = (\overrightarrow {AB}  - \overrightarrow {AC} ).\overrightarrow {AH}  = \overrightarrow {CB} .\overrightarrow {AH}  = 0\)

\( \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AH}  = \overrightarrow {AC} .\overrightarrow {AH} \)

b)  \(\overrightarrow {AB} .\overrightarrow {BC}  - \overrightarrow {HB} .\overrightarrow {BC}  = (\overrightarrow {AB}  - \overrightarrow {HB} ).\overrightarrow {BC}  = (\overrightarrow {AB}  + \overrightarrow {BH} ).\overrightarrow {BC}  = \overrightarrow {AH} .\overrightarrow {BC}  = 0\)

\( \Leftrightarrow \overrightarrow {AB} .\overrightarrow {BC}  = \overrightarrow {HB} .\overrightarrow {BC} \)

Bài 7 trang 98 SGK Toán lớp 10 tập 1 Cánh diều:

Một máy bay đang bay từ hướng đông sang hướng tây với tốc độ 700 km/h thì gặp luồng gió thổi từ hướng đông bắc sang hướng tây nam với tốc độ 40 km/h (Hình 68). Máy bay bị thay đổi vận tốc sau khi gặp gió thổi. Tìm tốc độ mới của máy bay (làm tròn kết quả đến hàng phần trăm theo đơn vị km/h.)

Lời giải:

Vẽ vecto \(\overrightarrow {AB} \) là vecto vận tốc của máy bay, \(\overrightarrow {AD} \) là vecto vận tốc của gió.

Khi đó vecto vận tốc mới của máy bay là \(\overrightarrow {AB}  + \overrightarrow {AD} \)

Dựng hình bình hành ABCD. Ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Áp dụng định lí cosin trong tam giác ABC, ta có:

 \(A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\)

Mà AB = 700, BC = AD = 40, \(\widehat B = {135^o}\)

\(\begin{array}{l} \Rightarrow A{C^2} = {700^2} + {40^2} - 2.700.40.\cos {135^o} \approx 531197,98\\ \Leftrightarrow AC \approx 728,83\end{array}\)

Vậy tốc độ mới của máy bay là 728,83 km/h.

Bài 8 trang 98 SGK Toán lớp 10 tập 1 Cánh diều:

Cho tam giác ABC có \(AB = 2,AC = 3,\widehat {BAC} = {60^o}.\) Gọi M là trung điểm của đoạn thẳng BC. Điểm D thỏa mãn \(\overrightarrow {AD}  = \frac{7}{{12}}\overrightarrow {AC} .\)

a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \)

b) Biểu diễn \(\overrightarrow {AM} ,\overrightarrow {BD} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \)

c) Chứng minh \(AM \bot BD\).

Lời giải:

a) \(\overrightarrow {AB} .\overrightarrow {AC}  = 2.3.\cos \widehat {BAC} = 6.\cos {60^o} = 3\)

b)Ta có: \(\overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM} \)(do M là trung điểm của BC)

\( \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \)

+) \(\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB}  = \frac{7}{{12}}\overrightarrow {AC}  - \overrightarrow {AB} \)

c) Ta có:

 \(\begin{array}{l}\overrightarrow {AM} .\overrightarrow {BD}  = \left( {\frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} } \right)\left( {\frac{7}{{12}}\overrightarrow {AC}  - \overrightarrow {AB} } \right)\\ = \frac{7}{{24}}\overrightarrow {AB} .\overrightarrow {AC}  - \frac{1}{2}{\overrightarrow {AB} ^2} + \frac{7}{{24}}{\overrightarrow {AC} ^2} - \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} \\ =  - \frac{1}{2}A{B^2} + \frac{7}{{24}}A{C^2} - \frac{5}{{24}}\overrightarrow {AB} .\overrightarrow {AC} \\ =  - \frac{1}{2}{.2^2} + \frac{7}{{24}}{.3^2} - \frac{5}{{24}}.3\\ = 0\end{array}\)

\( \Rightarrow AM \bot BD\)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác