Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.2 trên 6 phiếu

Toán 10 Cánh Diều

Chương 3. Hàm số và đồ thị

Giải bài tập 1; 2; 3; 4 trang 60; 5; 6; 7; 8; 9 trang 61 sách giáo khoa Toán lớp 10 Cánh diều tập 1 - Bài tập cuối chương 3. Một kĩ sư thiết kế đường dây điện từ vị trí A đến vị trí S và từ vị trí S đến vị trí C trên cù lao như Hình 38.

Bài 1 trang 60 SGK Toán lớp 10 tập 1 Cánh diều:

Tìm tập xác định của mỗi hàm số sau:

a) \(y = \frac{1}{{{x^2} - x}}\)

b) \(y = \sqrt {{x^2} - 4x + 3} \)

c) \(y = \frac{1}{{\sqrt {x - 1} }}\)

Lời giải:

a) Hàm số \(y = \frac{1}{{{x^2} - x}}\) có nghĩa khi \( \Leftrightarrow {x^2} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\)

Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\)

b) Hàm số \(y = \sqrt {{x^2} - 4x + 3} \) có nghĩa khi \( \Leftrightarrow {x^2} - 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\)

Vậy tập xác định của hàm số đã cho là \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)

c) Hàm số \(y = \frac{1}{{\sqrt {x - 1} }}\) có nghĩa khi \( \Leftrightarrow x - 1 > 0 \Leftrightarrow x > 1\)

Vậy tập xác định của hàm số đã cho là \(D = \left( {1; + \infty } \right)\).

Bài 2 trang 60 SGK Toán lớp 10 tập 1 Cánh diều:

Đồ thị ở Hình 36 cho thấy sự phụ thuộc của lượng hàng hoá được sản xuất (cung) (đơn vị; sản phẩm) bởi giá bán (đơn vị: triệu đồng/sản phẩm) đối với một loại hàng hoá.

a) Xác định lượng hàng hoá được sản xuất khi mức giá bán 1 sản phẩm là 2 triệu đồng; 4 triệu đồng.

b) Biết nhu cầu thị trường đang cần là 600 sản phẩm. Hỏi với mức giá bán là bao nhiêu thì thị trường cân bằng (thị trường cân bằng khi sản lượng cung bằng sản lượng cầu)?

Phương pháp:

a) Tìm điểm trên đồ thị có hoành độ bằng 2 và bằng 4. Từ đó tìm tung độ.

b) Tìm điểm trên đồ thị có tung độ bằng 6. Từ đó tìm hoành độ.

Lời giải:

Hoàn thiện đồ thị Hình 36, ta được: 

Đồ thị ở Hình 36 cho thấy sự phụ thuộc của lượng hàng hóa được sản xuất

a) Quan sát đồ thị hình trên, ta thấy lượng hàng hóa được sản xuất khi mức giá bán 1 sản phẩm là 2 triệu đồng; 4 triệu đồng lần lượt là 300 sản phẩm và 900 sản phẩm. 

b) Nhu cầu thị trường đang cần là 600 sản phẩm, với mức giá bán là 3 triệu đồng/sản phẩm thì thị trường cân bằng. 

Bài 3 trang 60 SGK Toán lớp 10 tập 1 Cánh diều:

Một nhà cung cấp dịch vụ Internet đưa ra hai gói khuyến mại cho người dùng như sau:

Gói A: Giá cước 190 000 đồng/tháng.

Nếu trả tiền cước ngày 6 tháng thì sẽ được tặng thêm 1 tháng.

Nếu trả tiền cước ngày 12 tháng thì sẽ được tặng thêm 2 tháng.

Gói B: Giá cước 189 000 đồng/tháng.

Nếu trả tiền cước ngày 7 tháng thì số tiền phải trả cho 7 tháng đó là 1 134 000 đồng.

Nếu trả tiền cước ngày 15 tháng thì số tiền phải trả cho 15 tháng đó là 2 268 000 đồng.

Giả sử số tháng sử dụng Internet là x (1 nguyên dương).

a) Hãy lập các hàm số thể hiện số tiền phải trả ít nhất theo mỗi gói A, B nếu thời gian

dùng không quá 15 tháng.

b) Nếu gia đình bạn Minh dùng 15 tháng thì nên chọn gói nào?

Lời giải:

a) Giả sử số tháng sử dụng Internet là x (x nguyên dương, x ≤ 15). 

Gọi y (đồng, y > 0) là số tiền phải trả khi dùng Internet.

Theo gói A, ta có: 

+ Nếu x ≤ 6: y = 190 000.x

+ Nếu 6 < x ≤ 13: y = 190 000 . (x – 1)

+ Nếu 13 < x ≤ 15: y = 190 000 . (x – 2)

Vậy ta có hàm số thể hiện số tiền ít nhất phải trả theo gói A là: \(\left\{ \begin{array}{l}x.190000\quad \;\quad \quad 1 \le x \le 6\\(x - 1).190000\quad \;7 \le x \le 12\\(x - 2).190000\quad \;13 \le x \le 15\end{array} \right.\)

Theo gói B, ta có: 

+ Nếu x < 7: y = 189 000 . x 

 + Nếu x = 7: y = 1 134 000

+ Nếu 7 < x < 13: y = 1 134 000 + (x – 7) . 189 000

+ Nếu 13 ≤ x ≤ 15: y = 2 268 000

Vậy ta có hàm số thể hiện số tiền ít nhất phải trả theo gói B là:\(y = \left\{ \begin{array}{l}x.189000\quad \;\quad \quad \;\quad \quad \;\quad \quad 1 \le x \le 6\\1134000 + (x - 7).189000\quad \;7 \le x \le 14\\2268000\quad \;\quad \quad \;\quad \quad \;\quad \quad \;x = 15\end{array} \right.\) 

b) Theo gói A, nếu gia đình bạn Minh dùng 15 tháng Internet thì nên số tiền cước trả ít nhất sẽ là theo cách chọn 12 tháng thanh toán 1 lần và được tặng 2 tháng, nghĩa là được dùng 14 tháng và mất phí theo tháng thêm 1 tháng nữa, tức là số tiền phải trả cho 15 tháng sử dụng là: 190 000 . 12 + 190 000 = 2 470 000 (đồng). 

Theo gói B, nếu trả cả 15 tháng 1 lúc thì gia đình bạn Minh phải trả số tiền ít nhất là 2 268 000 đồng. 

Vì 2 268 000 < 2 470 000. 

Vậy gia đình bạn Minh nếu dùng 15 tháng thì nên chọn gói B và trả tiền cước ngay 15 tháng. 

Bài 4 trang 60 SGK Toán lớp 10 tập 1 Cánh diều:

Quan sát đồ thị hàm số bậc hai \(y = a{x^2} + bx + c\) ở Hình 37a và Hình 37b rồi nêu:

a) Dấu của hệ số a;

b) Toạ độ đỉnh và trục đối xứng;

c) Khoảng đồng biến;

d) Khoảng nghịch biến;

e) Khoảng giá trị x mà y > 0;

g) Khoảng giá trị x mà \(y \le 0\).

Phương pháp:

a) Xác định bề lõm và so sánh a với 0

b) Xác định đỉnh và trục đối xứng của mỗi đồ thị.

c) Quan sát đồ thị và tìm khoảng đồng biến

d) Quan sát đồ thị và tìm khoảng nghịch biến

e) Khoảng giá trị x mà đồ thị nằm trên trục Ox

g) Khoảng giá trị x mà đồ thị nằm dưới trục Ox

Lời giải:

* Hình 37a: Quan sát đồ thị ta thấy:

a) Bề lõm của đồ thị hướng lên trên nên hệ số a > 0 hay hệ số a mang dấu “+”.

b) Tọa độ đỉnh I(1; – 1), trục đối xứng x = 1. 

c) Do hệ số a > 0 nên hàm số đồng biến trên khoảng (1; + ∞).

d) Hàm số nghịch biến trên khoảng (– ∞; 1). 

e) Phần parabol nằm phía trên trục hoành tương ứng với các khoảng (– ∞; 0) và (2; + ∞) nên hàm số y > 0 trên các khoảng giá trị của x là (– ∞; 0) ∪ (2; + ∞).

g) Phần parabol phía dưới trục hoành tương ứng với khoảng (0; 2) nên hàm số y < 0 trên (0; 2). Vậy khoảng giá trị của x mà y ≤ 0 là đoạn [0; 2]. 

* Hình 37b: Quan sát đồ thị ta thấy, 

a) Bề lõm của đồ thị hướng xuống dưới nên a < 0 hay hệ số a mang dấu “–”.

b) Tọa độ đỉnh I(1; 4), trục đối xứng x = 1. 

c) Do hệ số a < 0 nên hàm số đồng biến trên khoảng (– ∞; 1).

d) Hàm số nghịch biến trên khoảng (1; +∞). 

e) Phần parabol nằm phía trên trục hoành tương ứng với khoảng (– 1; 3) nên khoảng giá trị của x là (– 1; 3) thì y > 0. 

g) Phần parabol nằm phía dưới trục hoành tương ứng với các khoảng (– ∞; – 1) và (3; + ∞) nên khoảng giá trị của x để y ≤ 0 là (– ∞; – 1] ∪ [3; + ∞).

Bài 5 trang 61 SGK Toán lớp 10 tập 1 Cánh diều:

Vẽ đồ thị của mỗi hàm số sau:

a) \(y = {x^2} - 3x - 4\)

b) \(y = {x^2} + 4x + 4\)

c) \(y =  - {x^2} + 2x - 2\)

Lời giải:

a) \(y = {x^2} - 3x - 4\)

Đồ thị hàm số có đỉnh \(I\left( {\dfrac{3}{2}; - \dfrac{{25}}{4}} \right)\)

Trục đối xứng là \(x = \dfrac{3}{2}\)

Giao điểm của parabol với trục tung là (0;-4)

Giao điểm của parabol với trục hoành là (-1;0) và (4;0)

Điểm đối xứng với điểm (0;-4) qua trục đối xứng \(x = \frac{3}{2}\) là (3;-4)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

b) \(y = {x^2} + 4x + 4\)

Đồ thị hàm số có đỉnh \(I\left( { - 2;0} \right)\)

Trục đối xứng là \(x =  - 2\)

Giao điểm của parabol với trục tung là (0;4)

Giao điểm của parabol với trục hoành là I(-2;0)

Điểm đối xứng với điểm (0;4) qua trục đối xứng \(x =  - 2\) là (-4;4)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

c) \(y =  - {x^2} + 2x - 2\)

Đồ thị hàm số có đỉnh \(I\left( {1; - 1} \right)\)

Trục đối xứng là \(x = 1\)

Giao điểm của parabol với trục tung là (0;-2)

Điểm đối xứng với điểm (0;-2) qua trục đối xứng \(x = 1\) là (2;-2)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

Bài 6 trang 61 SGK Toán lớp 10 tập 1 Cánh diều:

Lập bảng xét dấu của mỗi tam thức bậc hai sau:

a) \(f\left( x \right) =  - 3{x^2} + 4x - 1\)

b) \(f\left( x \right) = {x^2} - x - 12\)

c) \(f\left( x \right) = 16{x^2} + 24x + 9\)

Phương pháp:

Bước 1: Tìm nghiệm của \(f\left( x \right) = 0\) và hệ số a.

Bước 2: Lập bảng xét dấu.

Lời giải:

a) Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + 4x - 1\) có hệ số

\(a =  - 3 < 0\) và \(\Delta  = {4^2} - 4.\left( { - 3} \right).\left( { - 1} \right) = 4 > 0\)

Do đó tam thức \(f\left( x \right)\) có 2 nghiệm phân biệt \(x = \frac{1}{3},x = 1\)

Bảng xét dấu:

b) \(f\left( x \right) = {x^2} - x - 12\)

\(a = 1 > 0\), \(\Delta  = {\left( { - 1} \right)^2} - 4.1.\left( { - 12} \right) = 49 > 0\)

=> \(f\left( x \right)\) có 2 nghiệm \(x =  - 3,x = 4\)

Bảng xét dấu:

c) \(f\left( x \right) = 16{x^2} + 24x + 9\)

\(a = 16 > 0\), \(\Delta ' = {12^2} - 16.9 = 0\)

=> \(f\left( x \right)\) có nghiệm duy nhất \(x =  - \frac{3}{4}\)

Bảng xét dấu:

Bài 7 trang 61 SGK Toán lớp 10 tập 1 Cánh diều:

Giải các bất phương trình sau:

a) \(2{x^2} + 3x + 1 \ge 0\)

b) \( - 3{x^2} + x + 1 > 0\)

c) \(4{x^2} + 4x + 1 \ge 0\)

d) \( - 16{x^2} + 8x - 1 < 0\)

e) \(2{x^2} + x + 3 < 0\)

g) \( - 3{x^2} + 4x - 5 < 0\)

Phương pháp:

Giải bất phương trình dạng \(f\left( x \right) > 0\).

Bước 1: Xác định dấu của hệ số a và tìm nghiệm của \(f\left( x \right)\)(nếu có)

Bước 2: Sử dụng định lí về dấu của tam thức bậc hai để tìm tập hợp những giá trị của x sao cho \(f\left( x \right)\) mang dấu “+”

Bước 3: Các bất phương trình bậc hai có dạng \(f\left( x \right) < 0,f\left( x \right) \ge 0,f\left( x \right) \le 0\) được giải bằng cách tương tự.

Lời giải:

a) \(2{x^2} + 3x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 2{x^2} + 3x + 1\) có 2 nghiệm phân biệt \(x =  - 1,x = \frac{{ - 1}}{2}\)

hệ số \(a = 2 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le  - 1\\x \ge  - \frac{1}{2}\end{array} \right.\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ { - \frac{1}{2}; + \infty } \right)\)

b) \( - 3{x^2} + x + 1 > 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + x + 1\) có 2 nghiệm phân biệt \(x = \frac{{1 - \sqrt {13} }}{6},x = \frac{{1 + \sqrt {13} }}{6}\)

Hệ số \(a =  - 3 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow \frac{{1 - \sqrt {13} }}{6} < x < \frac{{1 + \sqrt {13} }}{6}\)

Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{1 - \sqrt {13} }}{6};\frac{{1 + \sqrt {13} }}{6}} \right)\)

c) \(4{x^2} + 4x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 4{x^2} + 4x + 1\) có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\)

hệ số \(a = 4 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \mathbb{R}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)

d) \( - 16{x^2} + 8x - 1 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 16{x^2} + 8x - 1\) có nghiệm duy nhất \(x = \frac{1}{4}\)

hệ số \(a =  - 16 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) < 0 \Leftrightarrow x \ne \frac{1}{4}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{4}} \right\}\)

e) \(2{x^2} + x + 3 < 0\)

Ta có \(\Delta  = {1^2} - 4.2.3 =  - 23 < 0\) và có \(a = 2 > 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} + x + 3\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(2{x^2} + x + 3 < 0\) là \(\emptyset \)

g) \( - 3{x^2} + 4x - 5 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + 4x - 5\) có \(\Delta ' = {2^2} - \left( { - 3} \right).\left( { - 5} \right) =  - 11 < 0\) và có \(a =  - 3 < 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 4x - 5\) mang dấu “-” là \(\mathbb{R}\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 4x - 5 < 0\) là \(\mathbb{R}\).

Bài 8 trang 61 SGK Toán lớp 10 tập 1 Cánh diều:

Giải các phương trình sau:

a) \(\sqrt {x + 2}  = x\)

b) \(\sqrt {2{x^2} + 3x - 2}  = \sqrt {{x^2} + x + 6} \)

c) \(\sqrt {2{x^2} + 3x - 1}  = x + 3\)

Lời giải:

a) \(\sqrt {x + 2}  = x\)

Điều kiện: \(x \ge 0\)

Bình phương 2 vế của phương trình ta được:

\(x + 2 = {x^2} \Leftrightarrow {x^2} - x - 2 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 2\end{array} \right.\)

Trong hai giá trị trên ta thấy x = 2 thỏa mãn x ≥ 0. 

Vậy nghiệm của phương trình đã cho là x = 2. 

b) \(\sqrt {2{x^2} + 3x - 2}  = \sqrt {{x^2} + x + 6} \)

Bình phương 2 vế của phương trình ta được:

\(\begin{array}{l}2{x^2} + 3x - 2 = {x^2} + x + 6\\ \Leftrightarrow {x^2} + 2x - 8 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x =  - 4\end{array} \right.\end{array}\)

Thử lại cả hai giá trị trên vào phương trình (2) ta thấy cả hai giá trị x = 2 và x = – 4 đều thỏa mãn. 

Vậy nghiệm của phương trình đã cho là x = 2 và x = – 4.

c) \(\sqrt {2{x^2} + 3x - 1}  = x + 3\)

Điều kiện: \(x + 3 \ge 0 \Leftrightarrow x \ge  - 3\)

Bình phương 2 vế của phương trình ta được:

\(\begin{array}{l}2{x^2} + 3x - 1 = {\left( {x + 3} \right)^2}\\ \Leftrightarrow {x^2} - 3x - 10 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\x = 5\end{array} \right.\end{array}\)

Ta thấy cả hai giá trị trên đều thỏa mãn x > – 3. 

Vậy nghiệm của phương trình đã cho là x = – 2 và x = 5. 

Bài 9 trang 61 SGK Toán lớp 10 tập 1 Cánh diều:

Một kĩ sư thiết kế đường dây điện từ vị trí A đến vị trí S và từ vị trí S đến vị trí C trên cù lao như Hình 38. Tiền công thiết kế mỗi ki-lô-mét đường dây từ A đến S và từ S đến C lần lượt là 3 triệu đồng và 5 triệu đồng. Biết tổng số tiền công là 16 triệu đồng. Tính tổng số ki-lô-mét đường dây điện đã thiết kế.

Lời giải:

Gọi số ki-lô-mét đường dây điện từ vị trí A đến vị trí S là x (km) (x > 0). 

Khi đó trên hình vẽ ta có: SA = x km, AB = 4 km, BC = 1 km. 

Ta thấy AB = SA + SB, suy ra SB = AB – SA = 4 – x (km). (do SB > 0 nên 4 – x > 0 hay x < 4)

Lại có tam giác SBC vuông tại B nên theo định lý Pythagore ta có: \( CS = \sqrt {C{B^2} + B{S^2}} \)\( = \sqrt {1 + \left( {4 - {x^2}} \right)} \)(km)

Tổng số tiền từ A đến C là:

\(3.SA + 5.SC = 3.x + 5.\sqrt {1 + {{\left( {4 - x} \right)}^2}} \)(triệu đồng)

Khi đó ta có phương trình:

\(3.x + 5.\sqrt {1 + {{\left( {4 - x} \right)}^2}}  = 16\)

\( \Leftrightarrow 5\sqrt {1 + {{\left( {4 - x} \right)}^2}}  = 16 - 3x\)

\(\begin{array}{l}25.\left( {{x^2} - 8x + 17} \right) = {\left( {16 - 3x} \right)^2}\\ \Leftrightarrow 25{x^2} - 200x + 425 = 256 - 96x + 9{x^2}\\ \Leftrightarrow 16{x^2} - 104x + 169 = 0\\ \Leftrightarrow x = \frac{{13}}{4}\left( {tm} \right)\end{array}\)

Do \(16 - 3x > 0 \Leftrightarrow \forall 0 < x < 4\)

=> \(SC = \sqrt {1 + \left( {4 - {x^2}} \right)}  = 1,25\)

Vậy tổng ki-lô-mét đường dây điện đã thiết kế là SA+SC=3,25+1,25=4,5 (km)

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

  • Giải Toán 10 trang 71 Cánh diều tập 1

    Giải bài tập 1; 2; 3; 4; 5; 6; 7; 8 trang 71 sách giáo khoa Toán lớp 10 Cánh diều tập 1 - Bài 1: Giá trị lượng giác của một góc từ 0 đến 180. Định lý côsin và định lý sin trong tam giác. Bài 8. Bạn A đứng ở đỉnh của tòa nhà và quan sát chiếc diều, nhận thấy góc nâng (góc nghiêng giữa phương từ mắt của bạn A tới chiếc diều và phương nằm ngang)

  • Giải Toán 10 trang 77 Cánh diều tập 1

    Giải bài tập 1; 2; 3; 4; 5; 6; 7 trang 77 sách giáo khoa Toán lớp 10 Cánh diều tập 1 - Bài 2: Giải tam giác. Tính diện tích tam giác

  • Giải Toán 10 trang 82 Cánh diều tập 1

    Giải bài tập 1; 2; 3; 4; 5 trang 82 sách giáo khoa Toán lớp 10 Cánh diều tập 1 - Bài 3: Khái niệm vectơ. Cho hình thang ABCD có hai đáy là AB và CD. Tìm vectơ:

  • Giải Toán 10 trang 87 Cánh diều tập 1

    Giải bài tập 1; 2; 3; 4; 5; 6; 7; 8; 9 trang 87 sách giáo khoa Toán lớp 10 Cánh diều tập 1 - Bài 4: Tổng và hiệu của hai vectơ.

Bài giải mới nhất

Bài giải mới nhất các môn khác