Trang chủ
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết
Bình chọn:
4.9 trên 7 phiếu

Toán 10 Cánh Diều

Chương 4. Hệ thức lượng trong tam giác. Vectơ

Giải bài tập 1; 2; 3; 4; 5; 6; 7; 8 trang 71 sách giáo khoa Toán lớp 10 Cánh diều tập 1 - Bài 1: Giá trị lượng giác của một góc từ 0 đến 180. Định lý côsin và định lý sin trong tam giác. Bài 8. Bạn A đứng ở đỉnh của tòa nhà và quan sát chiếc diều, nhận thấy góc nâng (góc nghiêng giữa phương từ mắt của bạn A tới chiếc diều và phương nằm ngang)

Bài 1 trang 71 SGK Toán lớp 10 tập 1 Cánh diều:

Cho tam giác ABC có \(AB = 3,5;\;AC = 7,5;\;\widehat A = {135^o}.\) Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười).

Lời giải:

Áp dụng định lí cosin trong tam giác ABC ta có:

\(B{C^2} = A{C^2} + A{B^2} - 2AC.AB.\cos A\)

\(\begin{array}{l} \Leftrightarrow B{C^2} = 7,{5^2} + 3,{5^2} - 2.7,5.3,5.\cos {135^o}\\ \Leftrightarrow B{C^2} \approx 31,4\\ \Leftrightarrow BC \approx 5,6\end{array}\)

Áp dụng định lí sin trong tam giác ABC ta có: \(\frac{{BC}}{{\sin A}} = 2R\)

\( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{{5,6}}{{2.\sin {{135}^o}}} \approx 4\).

Vậy R = 4 và BC ≈ 5,6. 

Bài 2 trang 71 SGK Toán lớp 10 tập 1 Cánh diều:

Cho tam giác ABC có \(\widehat B = {75^o},\widehat C = {45^o}\) và BC = 50. Tính độ dài cạnh AB.

Lời giải:

Ta có: \(\widehat B = {75^o},\widehat C = {45^o}\)\( \Rightarrow \widehat A = {180^o} - \left( {{{75}^o} + {{45}^o}} \right) = {60^o}\)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}}\)

\( \Rightarrow AB = \sin C.\frac{{BC}}{{\sin A}} = \sin {45^o}.\frac{{50}}{{\sin {{60}^o}}} \approx 40,8\)

Vậy độ dài cạnh AB là 40,8.

Bài 3 trang 71 SGK Toán lớp 10 tập 1 Cánh diều:

Cho tam giác ABC có \(AB = 6,AC = 7,BC = 8\). Tính \(\cos A,\sin A\) và bán kính R của đường trong ngoại tiếp tam giác ABC.

Lời giải:

Áp dụng hệ quả của định lí côsin trong tam giác ABC ta có: \(cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{7^2} + {6^2} - {8^2}}}{{2.7.6}} = \frac{1}{4}\)

Do đó góc A nhọn nên ta có: \({\sin ^2}A + {\cos ^2}A = 1 \Rightarrow \sin A = \sqrt {1 - {{\cos }^2}A} \)(do \({0^o} < A \le {90^o}\))

\( \Rightarrow \sin A = \sqrt {1 - {{\left( {\frac{1}{4}} \right)}^2}}  = \frac{{\sqrt {15} }}{4}\)

Áp dụng định lí sin trong tam giác ABC ta có:\(\frac{{BC}}{{\sin A}} = 2R\)

\( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{8}{{2.\frac{{\sqrt {15} }}{4}}} = \frac{{16\sqrt {15} }}{{15}}.\)

Vậy \(\cos A = \frac{1}{4};\)\(\sin A = \frac{{\sqrt {15} }}{4};\)\(R = \frac{{16\sqrt {15} }}{{15}}.\)

Bài 4 trang 71 SGK Toán lớp 10 tập 1 Cánh diều:

Tính giá trị đúng của các biểu thức sau (không dùng máy tính cầm tay):

a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)

b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)

c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)

d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)

e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)

Lời giải:

a) A = cos 0° + cos 40° + cos 120° + cos 140°

        = cos 0° + cos 40° + cos 120° + cos (180° – 40°)

        = cos 0° + cos 40° + cos 120° – cos 40°  

        = cos 0° + cos 120°

        = 1 + \(-\frac{1}{2}\) (giá trị lượng giác của góc đặc biệt)

        =\(\frac{1}{2}\)

b) B = sin 5° + sin 150° – sin 175° + sin 180°

        = sin 5° + sin 150° – sin (180° – 5°) + sin 180°

        = sin 5° + sin 150° – sin 5° + sin 180°

        = sin 150° + sin 180°

        = \(\frac{1}{2}\)12+0">+0 (giá trị lượng giác của các góc đặc biệt)

        = \(\frac{1}{2}\)

c) C = cos 15° + cos 35° – sin 75° – sin 55°   

        = cos 15° + cos 35° – sin (90° – 15°) – sin (90° – 35°)  

        = cos 15° + cos 35° – cos 15° – cos 35°      (giá trị lượng giác của hai góc phụ nhau)

        = 0. 

d) D = tan 25° . tan 45° . tan 115°

        = tan (90° – 65°) . tan 45° . tan (180° – 65°) 

        = cot 65° . tan 45° . (– tan 65°)

        = – (cot 65° . tan 65°) . tan 45°

        = (– 1) . 1 = – 1. 

e) E = cot 10° . cot 30° . cot 100°

       = cot (90° – 80°) . cot 30° . cot (180° – 80°)

     = tan 80° . cot 30° . (– cot 80°)

     = – (tan 80° . cot 80°) . cot 30°

     = (– 1) .\(\sqrt 3\) = - \(\sqrt 3\)

Bài 5 trang 71 SGK Toán lớp 10 tập 1 Cánh diều:

Cho tam giác ABC. Chứng minh:

a) \(\sin \frac{A}{2} = \cos \frac{{B + C}}{2}\)

b) \(\tan \frac{{B + C}}{2} = \cot \frac{A}{2}\)

Lời giải:

Tam giác ABC có: \(\widehat A + \widehat B + \widehat C = {180^o}\) (định lí tổng ba góc trong một tam giác)

\(\Rightarrow \frac{{\widehat A}}{2} + \frac{{\widehat B + \widehat C}}{2} = {90^o}\) 

Do đó:\(\frac{{\widehat A}}{2}\) và \(\frac{{\widehat B + \widehat C}}{2}\) là hai góc phụ nhau.

a) Ta có: \(\sin \frac{A}{2} = \cos \left( {{{90}^o} - \frac{A}{2}} \right) = \cos \frac{{B + C}}{2}\)

b) Ta có: \(\tan \frac{{B + C}}{2} = \cot \left( {{{90}^o} - \frac{{B + C}}{2}} \right) = \cot \frac{A}{2}\)

Bài 6 trang 71 SGK Toán lớp 10 tập 1 Cánh diều:

Để đo khoảng cách từ vị trí A đến vị trí B ở hai bên bờ một cái ao, bạn An đi dọc bờ ao từ vị trí A đến vị trí C và tiến hành đo các góc BAC, BCA. Biết AC = 25 m, \(\widehat {BAC} = 59,{95^o};\;\widehat {BCA} = 82,{15^o}.\) Hỏi khoảng cách từ vị trí A đến vị trí B là bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Lời giải:

Xét tam giác ABC, ta có: \(\widehat {BAC} = 59,{95^o};\;\widehat {BCA} = 82,{15^o}.\)

\( \Rightarrow \widehat {ABC} = {180^o} - \left( {59,95 + 82,{{15}^o}} \right) = 37,{9^o}\)

Áp dụng định lí sin trong tam giác BAC ta có: \(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}\)

\( \Rightarrow AB = \sin C.\frac{{AC}}{{\sin B}} = \sin 82,{15^o}.\frac{{25}}{{\sin {37,9^o}}} \approx 40,32\)

Vậy khoảng cách từ vị trí A đến vị trí B là 40,32 m.

Bài 7 trang 71 SGK Toán lớp 10 tập 1 Cánh diều:

Hai tàu đánh cá cùng xuất phát từ bến A và đi thẳng đều về hai vùng biển khác nhau, theo hai hướng tạo với nhau góc \({75^o}\). Tàu thứ nhất chạy với tốc độ 8 hải lí một giờ và tàu thứ hai chạy với tốc độ 12 hải lí một giờ. Sau 2,5 giờ thì khoảng cách giữa hai tàu là bao nhiêu hải lí (làm tròn kết quả đến hàng phần mười)?

Phương pháp:

Bước 1: Quãng đường mỗi tàu đi được sau 2,5 giờ.

Bước 2: Tính khoảng cách giữa hai tàu bằng cách áp dụng định lí cosin.

Lời giải:

Tàu thứ nhất chạy với tốc độ 8 hải lí một giờ nên sau 2,5 giờ thì tàu thứ nhất chạy được  8 . 2,5 = 20 (hải lí). 

Tàu thứ hai chạy với tốc độ 12 hải lí một giờ nên sau 2,5 giờ thì tàu thứ hai chạy được 12 . 2,5 = 30 (hải lí). 

Hai tàu cùng chạy từ bến A và đi thẳng về 2 vùng biển khác nhau theo hướng tạo với nhau góc 75°, giả sử tàu thứ nhất chạy về vùng biển B và tàu thứ hai chạy về vùng biển C, ta có hình vẽ mô phỏng như sau: 

Tàu thứ nhất chạy với tốc độ 8 hải lí một giờ nên sau 2,5 giờ thì tàu thứ nhất chạy được  8 . 2,5 = 20 (hải lí). 

Tàu thứ hai chạy với tốc độ 12 hải lí một giờ nên sau 2,5 giờ thì tàu thứ hai chạy được 12 . 2,5 = 30 (hải lí). 

Hai tàu cùng chạy từ bến A và đi thẳng về 2 vùng biển khác nhau theo hướng tạo với nhau góc 75°, giả sử tàu thứ nhất chạy về vùng biển B và tàu thứ hai chạy về vùng biển C, ta có hình vẽ mô phỏng như sau: 

BC2 = AB2 + AC2 – 2AB. AC. cos A = 202 + 302 – 2 . 20 . 30 . cos 75° ≈ 989,4

Suy ra: BC ≈ 31,5 (hải lí).

Vậy sau 2,5 giờ thì khoảng cách giữa hai tàu là 31,5 hải lí. 

Bài 8 trang 71 SGK Toán lớp 10 tập 1 Cánh diều:

Bạn A đứng ở đỉnh của tòa nhà và quan sát chiếc diều, nhận thấy góc nâng (góc nghiêng giữa phương từ mắt của bạn A tới chiếc diều và phương nằm ngang) là \(\alpha  = {35^o}\); khoảng cách từ đỉnh tòa nhà tới mắt bạn A là 1,5 m. Cùng lúc đó ở dưới chân tòa nhà, bạn B cũng quan sát chiếc diều và thấy góc nâng là \(\beta  = {75^o}\); khoảng cách từ mặt đất đến mắt bạn B cũng là 1,5 m. Biết chiều cao của tòa nhà là h = 20 m (Hình 17). Chiếc diều bay cao bao nhiêu mét so mặt đất (làm tròn kết quả đến hàng đơn vị)?

Phương pháp:

Bước 1: Vẽ hình, gọi các điểm O, C, D, H như hình vẽ.

Bước 2: Đặt x = OC. Tính AC, BD theo \(x,\alpha ,\beta \).

Bước 3: Lập luận tìm x. Từ đó suy ra khoảng cách OH.

Lời giải:

 

Xét tam giác OAC, ta có: \(\tan \alpha  = \frac{{OC}}{{AC}} \Rightarrow AC = \frac{{OC}}{{\tan \alpha }} = \frac{x}{{\tan {{35}^o}}}\)

Xét tam giác OBD, ta có: \(\tan \beta  = \frac{{OD}}{{BD}} \Rightarrow BD = \frac{{OD}}{{\tan \beta }} = \frac{{x + 20}}{{\tan {{75}^o}}}\)

Mà:\(AC = BD\)\( \Rightarrow \frac{x}{{\tan {{35}^o}}} = \frac{{x + 20}}{{\tan {{75}^o}}}\)

\(\begin{array}{l} \Leftrightarrow x.\tan {75^o} = \left( {x + 20} \right).\tan {35^o}\\ \Leftrightarrow x = \frac{{20.\tan {{35}^o}}}{{\tan {{75}^o} - \tan {{35}^o}}} \approx 4,6\end{array}\)

Suy ra OH = 26,1.

Vậy chiếc diều bay cao 26,1 m so với mặt đất.

Giaibaitap.me

Góp ý - Báo lỗi

Vấn đề em gặp phải là gì ?

Hãy viết chi tiết giúp Giaibaitap.me

Bài giải mới nhất

Bài giải mới nhất các môn khác